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1 Overview

This is the specification for how to apply Cortex to the 1000 Genomes populations; in other words
this gives the nitty gritty details on how to build and error clean assembled graphs of the various
populations, and finish up with a single VCF where every sample has been genotyped at every site
(including sites that were only discovered in other populations).

2 People

We are currently running this collaboration between EBI, Michigan, Stanford, Einstein and Oxford,
and so it is important we all apply exactly the same methodology/pipeline to the data.

3 Goal

The goal is to produce a highly accurate set of variant calls which access deeper into the mutation
spectrum than any other callset on the 1000 Genomes.

However we do not expect it to be highly sensitive, as there is low power to detect singletons
and doubletons. We would not want to draw inference afterwards on the basis of patterns specific
to the low end of the frequency spectrum. For this iteration, we’re all running with k=31.

4 What has changed since version 9 of this document?

Updated to use the fact that Cortex can now handle gzipped fastq. Updated the install
instructions for Cortex - much simpler now. –format option removed from Cortex (autodetects
if fasta, fastq or gzipped). –max_read_len not needed when loading fastq (but is needed with
–gt).

5 Running the same pipeline at multiple centres

If we are to generate comparable callsets which really are products of the same pipeline, there are
a few things we need to do.

1. Please use a clean install of Cortex v1.0.5.13, now available at

http://sourceforge.net/projects/cortexassembler/files/cortex_var/latest/CORTEX_release_v1.0.5.13.tgz

1. Eirher use the wrapper-scripts I provide, or use exactly the command-lines documented
below (except where the doc specifies to use a cleaning threshold dependent on your data).
For example, in the genotyping step, I use a genome length of 3 billion. Please don’t “fix”
this and use a more accurate estimate of the human genome length - it’s more important
all of us have consistently calibrated genotype confidences.

2. A simple test case is to take a “pseudopopulation” of 5 samples, specifically NA19449 (6x),
NA19436 (5x), NA19316 (9x), NA19443 (13x), NA19394 (6x), and run this population
through the pipeline. At the end we should all get identical VCFs. I’m running the pipeline
myself.
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6 Pipeline Outline

The pipeline is as outlined in this section. I have provided scripts to run all of these steps now,
available in the Cortex release under scripts/1000genomes

Each centre is allocated a set of populations to own. Then, for each population

1. Build a binary graph file for each sample (one command-line instruction). This requires
~20-50 GB of RAM (afraid it varies depending on how “dirty” the data is, 30Gb of disk,
~3 hours per sample. At Oxford I ran this on multiple processors on a single 512Gb RAM
machine, but you could accelerate it further if you have a cluster with nodes with enough
memory. Exact memory requirement per sample depends on depth of coverage; a high
coverage (Illumina) sample would top out around 70GB of RAM.

2. Error cleaning of the samples is done by comparison with a pooled graph of all the samples
in this population. This is the bottleneck as far as memory is concerned. All of the sample
graphs are merged into one pool, which is then error-cleaned, and dumped as a file. For a
high diversity (or low quality sequence) population, this would squeeze up against a 256Gb
RAM limit. A pragmatic approach is to split the population into two halves, pool and error-
clean these, and then merge those cleaned pools. This will halve the memory requirement
and avoid going just over the 256 GB RAM limit, although it would mean we could lose
some doubletons which had one sample in each half. This is what I did with the Luhya,
as 40 samples contained 15 billion kmers (I was using k=55, so needed almost double the
memory we need for this pipeline). At the end of this we have a clean pool graph. There
is then a lower memory (64-72GB RAM) step, where each sample’s uncleaned graph file
is compared with the pool, cleaned, and then dumped as a cleaned graph. These cleaned
graphs are a final product, which will be distributed to the 1000 Genomes project (and
public).

3. Site discovery is now done on the pool. Memory requirement is 64-72Gb RAM, produces
a callfile ~10Mb in size, and takes about 6-10 hours.

4. Genotyping requires a multicolour graph of all ~80 samples in the population. Although 80
whole genomes requires too much memory with the standard Cortex release (forthcoming
release fixes this, but I don’t want to use brand new code on a big production like this, I
want heavily tested code), but 80 people’s polymorphisms don’t require that much space.
Therefore we now cut out from each sample graph the polymorphisms that have been
discovered, and dump that as a new binary graph file. Memory requirement is ~14Gb, so
could be parallelised if you want.

5. Load all these small graphs into one multicolour graph, and genotype everyone. Mem
requirement:~256Gb of RAM. This depends on the level of diversity of the population. The
Luhya would require ~260 for example. It would make sense to ensure the high diversity
populations are done somewhere where there are servers with >256Gb of RAM, to be safest
(eg I know the EBI have servers like this available).

6. Parse the output and dump a VCF. This will (obviously) be a VCF of calls made in this
population, which will only really be useful for us to assess intermediate calls. Our final
VCF would include all sites called in all populations

Once all the Phase 2 populations are complete, we make a union of all the calls across all popu-
lations, and then repeat steps 4,5,6 on each population using this new callset.

7 For the impatient - here’s the pipeline in commandlines (using my scripts)

Note that all the arguments for all of these command-lines are predetermined
- ie we know them now - except for one, the cleaning threshold T (see step 4
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below). XYZ is the population identifier. This flow diagram summarises the
job dependencies and order. Particularly high mem jobs are in red.

1. perl script1_make_filelist_from_sequence_index.pl –sample NAxxxx (one process per
sample)

2. perl script2_build_uncleaned_sample_graph.pl –sample NAxxxx (one process per sample

3. perl script3_build_unclean_pool.pl –list LIST –outdir OUTDIR –pop XYZ –mem_height
28 –mem_width 100 (just one process only, but this is the highest memory step, Ideally,
alloc 430Gb RAM. On a 256 Gb RAM server, you will have to split into two pools)
Once this is done, you can look at the output file, call Zam, and he will determine
the threshold T, to be used below. This is the only point where a human needs to
intervene.

4. cortex_var_31_c1 –kmer_size 31 –mem_height 28 –mem_width 100 –multicolour_bin
XYZ_uncleaned_pool.q10.k31.ctx –remove_low_coverage_supernodes T –dump_binary
XYZ_cleaned_pool.threshT.k31.ctx >& output_clean_pool (this also requires high mem-
ory, but is independent of script4 (could be run at the same time)

5. perl script4_clean_samples_against_clean_pool.pl –pop LWK –list list_uncleaned_binaries
–cleaned_pool XYZ_cleaned_pool.threshT.k31.ctx –thresh T (Requires 125Gb RAM
irrespective of how many samples you want to clean. This will clean each sample
sequentially. Can be parallelised (pass it a smaller list, and run several instances)

6. perl script5_discovery.pl –ref /path/to/human_g1k_v37.proper_chroms.k31.ctx –pop
XYZ –cleaned_pool XYZ_cleaned_pool.threshT.k31.ctx –thresh T –outdir XYZ_variant_calls/
(this is alsi independent of script4, but does need step6 above)

7. perl script6_dump_a_single_graph_of_bubble_branches_to_be_shared_later_by_parallel_processes.pl
–bubble_calls XYZ_variant_calls/XYZ_bubbles_threshT –ref human_g1k_v37.proper_chroms.k31.ctx
–thresh T (this is a very low memory and quick job)
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8. perl script7_intersect_cleaned_sample_with_bubbles_PAR.pl –bubble_graph XYZ_bubbles_threshT.branches.k31.ctx

–sample NA19316 –sample_cleaned_graph NAxxxx.uncleaned.q10.k31.cleanT.ctx –thresh T (this

command dumps a small binary for one sample. Run many of these in parallel - will finish fast (<1

hour?)

9. cortex_var_63_c100 –colour_list ref_then_XYZ_clean_samples_overlapping_bubbles
–kmer_size 31 –mem_height 23 –mem_width 100 –dump_binary multicol_ref_then_XYZ_samples_overlap_bubbles.k31.ctx
(high memory step also (replace 100 with the number of samples+1), between 350 and 440
Gb RAM depending on how many samples).

10. cortex_var_63_c100 –kmer_size 31 –mem_height 23 –mem_width 100 –multicolour_bin
multicol_ref_then_XYZ_samples_overlap_bubbles.k31.ctx –max_read_len 15000 –gt
XYZ_bubbles_threshT,XYZ_bubbles_threshT.genotyped,BC –genome_size 3000000000
–experiment_type EachColourADiploidSampleExceptTheRefColour –print_colour_coverages
–estimated_error_rate 0.01 –ref_colour 0 >& genotyping.log (do the genotyping)

11. perl scripts/analyse_variants/make_read_len_and_total_seq_table.pl genotyping.log >&
genotyping.log.table (takes <1second)

12. perl scripts/analyse_variants/make_covg_file.plXYZ_bubbles_threshT.genotyped NUM_SAMPLES
0 (takes ~1 hour?)

13. cat classifier.parallel.ploidy_aware.R | R –vanilla –args 1 5000027 XYZ_bubbles_threshT.genotyped.covg_for_classifier
5000027 81 1 genotyping.log.table 3000000000 31 2 XYZ_bubbles_threshT.genotyped.classified
(Run the population filter - takes ~24 hours, but you can parallelise into as many chunks
as you like - see below - inp principle can be done in minutes)

14. perl process_calls.pl –callfile bubbles.genotyped –callfile_log genotyping.log –outvcf pop-
ulationname.bubbles –outdir OUTPTU_DIRECTORY –samplename_list <file, lists names
of each colour/sample in the same order they are in the colours> –num_cols number_of_colours
–stampy_hash /path/to/ref.stampy –vcftools_dir /path/to/vcftools –caller BC –kmer 31
–stampy_bin /path/to/stampy.py –refcol 0 –pop_classifier POP_FILTER_OUTPUT –
ploidy 2 –ref_fasta grc37.fa_without_any_decoy_stuff

8 Compiling and installing the latest release of Cortex

Use a clean install of Cortex version 1.0.5.13. Follow the instructions in the INSTALL file. In
essence, you need to

1. Run a bash script, “bash install.sh”, which compiles all the auxiliary libraries (only
needs to be done once)

2. Compile Cortex itself

Then there are a few things you need to do for the VCF-dumping tools

1. Obtain Stampy from http://www.well.ox.ac.uk/project-stampy. Unzip it somewhere,
cd into it and type make. Stampy needs Python version 2.6 or 2.7. Only supports
x86_64 and (experimental) Mac. The process_calls.pl script for dumping VCF will
need as an argument the path to your Stampy.py.

2. Download this version of VCFTools https://sourceforge.net/projects/vcftools/files/vcftools_0.1.9.tar.gz

9 Details of each of the above pipeline steps

In the following steps, I always use XYZ to refer to the population abbreviation (eg LWK for
Luhya).
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9.1 Files you will need to download

The following files are all available from here:

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120814_cortex_resources/

1. A standard reference genome binary human_g1k_v37.proper_chroms.k31.ctx

2. A Stampy hash of this reference binary, this is two files: human_g1k_v37.sthash, and

human_g1k_v37.stidx

3. A common installation of Stampy to avoid version nonsense: stampy-1.0.13.tgz

9.2 Making a list of samples

Parse this 1000 Genomes sequence.index file:

ftp.1000genomes.ebi.ac.uk:/vol1/ftp/sequence_indices/20120522.sequence.index

Pull out those lines with your population identifier in column 10 (counting from 0 - has POPU-
LATION as header). Exclude lines with 1 in column 20 (WITHDRAWN).

Script provided: I have provided a sample script to do just this: it reads the sequence
index, and given a sample-id, gets the appropriate files from the index, checks they are present
on the filesystem (unzipping them if necessary) and makes the filelists in the format Cortex
expects them. Usage

perl script1_make_filelist_from_sequence_index.pl –sample NA19316

9.3 File naming convention

Please can we all use the same convention for file-naming. Use .ctx at the end of a filename to sig-
nify a Cortex binary graph file. I suggest, for uncleaned binaries, a format: NAxxxx.k31.uncleaned.q10.ctx,
and for cleaned NAxxxx.k31.q10.cleanedT.ctx, where T is the threshold used for cleaning the pool
(see below), and 5 is the quality score threshold used.

9.4 Building per-sample uncleaned graphs

The command-line is

cortex_var_31_c1 –sample_id NAxxxx –kmer_size 31 –mem_height 25 –
mem_width 150 –se_list FILE_SE –pe_list FILE_PE1,FILE_PE2 –quality_score_threshold
10 –dump_binary sample_id.uncleaned.q10.k31.ctx –remove_pcd_duplicates >&
logfile_sampleid_build_uncleaned_q10

FILE_SE1 lists all the single ended unzipped fastq. FILE_PE1 lists all the _1 paired end unzipped
fastq, etc. Note this change from the last version of this document: I have added a –
sample_id argument, so the sample identifier is stored in the binary.

Script provided: I’ve provided a script that does this - script2_build_uncleaned_sample_graph.pl.
It takes the sample_id as its only argument - eg

perl script2_build_uncleaned_sample_graph.pl –sample NA12878

(but has hardcoded inside it the path to the root directory where you want all of this stuff to
happen), so you can parallelise many instances of this by just calling this with different sample_id’s
as arguments. Each instance uses 75GB RAM (can be modified). Time taken to build a graph
for one sample depends on speed of access to your disk, but could be anywhere between 2 and 6
hours.
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9.5 Building a pool and error-cleaning it

We make a colourlist - a list containing one tab-separated line with two fields. First, the name
of a file listing all the uncleaned binaries. Second, the text that will go into the “sample-id”
metadata in the header of this binary. In this case, use XYZ_pool (eg for the Luhya I would
use LWK_pool). This just means that later on, if someone loads this graph, they will know

>cat colourlist_for_merge
list_all_uncleaned_binaries XYZ_Pool
>cat list_all_uncleaned_binaries
sample_1.uncleaned.q10.k31.ctx
sample_2.uncleaned.q10.k31.ctx
sample_3.uncleaned.q10.k31.ctx
sample_4.uncleaned.q10.k31.ctx
..
sample_80.uncleaned.q10.k31.ctx
>cortex_var_31_c1 –kmer_size 31 –mem_height 27 –mem_width 110 –

colour_list colourlist_for_merge –dump_binary XYZ_uncleaned_pool.q10.k31.ctx
–dump_covg_distribution XYZ_uncleaned_pool.covg.txt >& output_merge_uncleaned

The mem height/width arguments I specified above will allow you to go up to 14.7 billion kmers,
which is as many as you can fit on a 256Gb RAM server (a cleaned population should have 3-5
billion (eg Luhya is 3.5 billion) , my UNcleaned LWK had to be split into two pools of 15 billion
(obviously a lot of overlap, the total is not 30 billion) - so a 256GB server would not have sufficed).
If you have a server with at least 512Gb RAM, the preferred option if just use –mem_height
28 –mem_width 100 , which will support 27 billion kmers, and use 420Gb of RAM. This is
overkill, but it pretty much guarantees success, and you don’t need to split the pool into two etc
(see next section).

This is a slow process, which may take up to 48 hours, depending on the load on your disk, and
connection between disk and server. We’ve just added a significant speed improvement to Cortex
though, so I’m not sure how long it will be. If CPU is the bottleneck, our performance boost will
help, but if IO is the bottleneck, then it won’t - depends on your compute infrastructure/usage at
the time.

Script provided: I’ve provided ascript: script3_build_unclean_pool.pl,

perl script3_build_unclean_pool.pl –list LIST –outdir OUTDIR –pop XYZ
–mem_height 28 –mem_width 100

where LIST is a filelist of the uncleaned sample binaries, the OUTDIR is wherever you want
to put the merged population binary. The script is very simple, but it will complain if you
try to allocated too little memory.

Error Modes: there are two ways in which this script can fail

1. Your server does not have enough memory to give you as much as you have asked for, so
right at the start (immediately), it will fail to allocate the memory it needs. You will get
a message saying “Giving up - unable to allocate memory for the hash table”. If you use
script3, that error will be in this file OUTDIR/XYZ_merged_uncleaned_samples.k31.q10.ctx.log

2. Your server gives you as much memory as you have asked for, but it turns out you have
asked for too little, and your sequencing data won’t fit. You will get a message saying
“Dear user - you have not allocated enough memory to contain your sequence data.”. If
you use script3, that error will be in this file: OUTDIR/XYZ_merged_uncleaned_samples.k31.q10.ctx.log
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9.5.1 In case you completely run out of memory

If at all possible on your server, increase mem_height and width in order to be
able to merge all the samples into one pool. If that is impossible, then follow the
instructions in this section.

If this fails because even the full capacity of a 256Gb RAM server is not enough, then split
the samples into two lists, and do this:

>cat colourlist_for_merge_first_half
list_first_half_uncleaned_binaries
>cat list_first_half_uncleaned_binaries
sample_1.uncleaned.q10.k31.ctx
sample_2.uncleaned.q10.k31.ctx
sample_3.uncleaned.q10.k31.ctx
sample_4.uncleaned.q10.k31.ctx
..
sample_40.uncleaned.q10.k31.ctx
>cat colourlist_for_merge_second_half
list_second_half_uncleaned_binaries
>cat list_second_half_uncleaned_binaries
sample_41.uncleaned.q10.k31.ctx
sample_42.uncleaned.q10.k31.ctx
sample_43.uncleaned.q10.k31.ctx
...
sample_80.uncleaned.q10.k31.ctx
>cortex_var_31_c1 –kmer_size 31 –mem_height 27 –mem_width 110 –

colour_list colourlist_for_merge_first_half –dump_binary XYZ_first_half_pool.clean1.q10.k31.ctx
–remove_low_coverage_supernodes 1 >& output_merge_first_half

>cortex_var_31_c1 –kmer_size 31 –mem_height 27 –mem_width 110 –
colour_list colourlist_for_merge_second_half –dump_binary XYZ_second_half_pool.clean1.q10.k31.ctx
–remove_low_coverage_supernodes 1 >& output_merge_second_half

ie break the pool in two, and do the absolute minimal cleaning, and then merge. So first make a
new colourlist:

>cat colourlist_for_merging_subpools
list_both_subpools
>cat list_both_subpools
XYZ_first_half_pool.clean1.q10.k31.ctx
XYZ_second_half_pool.clean1.q10.k31.ctx

and then merge the two halves:

>cortex_var_31_c1 –kmer_size 31 –mem_height 27 –mem_width 110 –
colour_list colourlist_for_merging_subpools –dump_binary XYZ_uncleaned_pool.q10.k31.ctx
–dump_covg_distribution XYZ_uncleaned_pool.covg.txt –remove_low_coverage_supernodes
1 >& output_merge_first_half

If we can possibly avoid doing this, it is best to, as it will kill low frequency variants which are
split between the two pools.

Now we are ready to choose the proper cleaning threshold for the whole pool.

8



9.5.2 Choosing the error cleaning threshold:

This point of the process does require a human decision - please contact me with the
coverage distribution of the uncleaned pool to confirm the right threshold.

Here’s how the choice is made:
If we have a 1% error rate, and depth of coverage D (for example when I built the Luhya,

I had 85 individuals at 6x=510x), then our rough expectation is 0.01D errors at a monomorphic
site. ie 5.1 errors at every site for the LWK . So the default choice would be :

Default cleaning threshold =
⌃TOTAL_DEPTH_REPORTED_BY_CORTEX

100

⌥

Note I say reported by Cortex - given you have used a quality filter, you effectively

lose coverage. Each sample had a log file called logfile_sampleid_build_uncleaned_q10
above, and in it, under some asterisks (**********) it reports the mean read length and total
sequence loaded. Sum the total sequence loaded from all samples, and divide by 3 billion, to
get TOTAL_DEPTH_REPORTED_BY_CORTEX.

In the case of the Luhya, this is 510/100=5.1. However that’s just your prior expec-
tation. You need to do two more things.

First; Look at the file XYZ_uncleaned_pool.covg.txt produced at the last step. With
version 1.0.5.11 and earlier it looks like this

but actually that confuses everyone, “multiplicity” is actually Kmer coverage,
and “Number” is frequency (the number of kmers with that kmer coverage), so
I’m moving to this format

Anyway, clean the file up so there is no “Multiplicity:” or “Number:” or header. Plot the
first column (kmer coverage) as X axis (running from 0 to 400 or so) and the second column
(frequency) as Y axis (on a log scale). eg in R the command would be

data<-read.table("XYZ_uncleaned_pool.covg.txt", header=FALSE)
plot(data[,1], data[,2], log="y", xlim=c(0,500), main="Kmer covg

distribution", xlab="Kmer covg", ylab="Frequency")
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This produces something like this:

Now you see a peak somewhere just under 100, and a minimum somewhere
on the left. Now ideally/simplistically we would pick T=the x-coordinate of
the minimum. But we don’t want T too large or it will remove low frequency
variants, so it is a tradeoff. This example is in fact the LWK data I used for my
k=55 calls for 1000 Genomes. Zoom in to work out where the minimum is

plot(data[,1], data[,2], log="y", xlim=c(0,100), main="Kmer covg
distribution", xlab="Kmer covg", ylab="Frequency")

and we see this:

OK, it’s very flat at the bottom. We remember that we just want to kill the
majority of the errors. Cortex is very effective at distinguishing false positives
when calling in a population - we just need to clean the graph up enough that
the errors don’t mess up all our bubbles.

Now, we compare our default choice mentioned above, 5.1, and check it lies
lies to the right of the spike at 1, and lies inside the minimum. In this case, it
looks fine. I actually chose a value of T=6 for this dataset, as I wanted to be
conservative.

Second: double check that our choice is not killing far too many low fre-
quency variants. How do we do this? Well, we have 510x coverage on 85
samples=170 chromosomes. So an allele can have allele count between 0 and
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170. Each copy of the allele has coverage=510/170=3x. However coverage drops
in a de Bruijn graph by a factor (R-k+1)/R. For the LWK dataset I had mean
read length 90bp and k=55, so this factor is (90-55+1)/90=0.4. Thus each al-
lele copy has a coverage=0.4*3 =1.2. So if we use T=6, we remove alleles with
count<=6/1.2=5. That corresponds to a frequency of 5/170=3%. That’s a
rough estimate (and later analysis suggests that was a bit of an underestimate)

Having made the choice, then error-clean with threshold T.

cortex_var_31_c1 –kmer_size 31 –mem_height 28 –mem_width 100 –multicolour_bin
XYZ_uncleaned_pool.q10.k31.ctx –remove_low_coverage_supernodes T –dump_binary
XYZ_cleaned_pool.threshT.k31.ctx >& output_clean_pool

Error cleaning can take a day or two, don’t panic if it is running silently. If you have to tell your
scheduler how long to expect it to take, tell it it will take a week (it won’t, but it will really annoy
you if it kills it too early).

No script provided! This is just a single command-line. Later scripts will assume
you stick to the naming convention.

9.6 Cleaning the per-sample graphs by comparing with the cleaned pool

Make a filelist for each sample; in general (outside this Phase 2 plan) this would list all the binaries
that correspond to that sample (eg different from libraries, which might require different error-
cleaning), but in our case, we just have one binary per sample, so this filelist has one line only,
giving the full path to the uncleaned binary. Please make sure there are no empty lines at the end

of the filelist, and that there is a carriage return at the end of each line. Then make a list,
LIST of these filelists. So LIST contains one line per sample, and each line is a filelist.

Check out how many kmers were in your cleaned pool. The output from cleaning the pool
should end with text like this:

Dump multicolour binary with 1 colours (compile-time setting)
3949783396 kmers dumped

In a diverse African population, you expect 4 billion. In a less diverse population you might only
have 3.5 billion or less . See Appendix 1 for details. Here I use mem_height 25 and mem_width
150 to support 5 billion.

Then you clean as follows

cortex_var_31_c2 –kmer_size 31 –mem_height 25 –mem_width 150 –multicolour_bin
XYZ_cleaned_pool.threshT.k31.ctx –colour_list LIST –load_colours_only_where_overlap_clean_colour
0 –successively_dump_cleaned_colours cleanT

This will dump one cleaned binary per sample, in the same directory that it currently resides, and
will add the suffix “cleanT”, where T is the threshold you used for cleaning the pool.

Script provided: I’ve provided a script, script4_clean_samples_against_clean_pool.pl,
that will run this. All you need to do is give it a list of all the sample uncleaned binaries,
and the cleaned-pool-binary, and it will make all the filelists Cortex needs and run the error
cleaning. It will default to the mem height/width arguments in the command-above unless
you tell it otherwise. So you run it like this

perl script4_clean_samples_against_clean_pool.pl –pop LWK –list list_uncleaned_binaries
–cleaned_pool XYZ_cleaned_pool.threshT.k31.ctx –thresh T

This will require about 125Gb of RAM. If you have multiple high RAM servers, you can
parallelise this - instead of having one long list of all the uncleaned binaries, split the list up.
eg if you have a 512Gb RAM machine, you could do 4 instances in parallel - so split the list
into 4 and run 4 instances in parallel
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perl script4_clean_samples_against_clean_pool.pl –pop LWK –list list_uncleaned_binaries_1
–cleaned_pool XYZ_cleaned_pool.threshT.k31.ctx –thresh T

perl script4_clean_samples_against_clean_pool.pl –pop LWK –list list_uncleaned_binaries_2
–cleaned_pool XYZ_cleaned_pool.threshT.k31.ctx –thresh T

perl script4_clean_samples_against_clean_pool.pl –pop LWK –list list_uncleaned_binaries_3
–cleaned_pool XYZ_cleaned_pool.threshT.k31.ctx –thresh T

perl script4_clean_samples_against_clean_pool.pl –pop LWK –list list_uncleaned_binaries_4
–cleaned_pool XYZ_cleaned_pool.threshT.k31.ctx –thresh T

9.7 Site discovery

Straightforward, no decisions to make. We include the reference genome purely for annotation
purposes. To ensure we all use the same one, I have provided a pre-built reference binary
human_g1k_v37.proper_chroms.k31.ctx (built from the official 1000g reference, excluding all
the decoy stuff), which I have sent to the DCC (Holly and Laura).

So we need to make 3 filelists - filelist_ref_binary, filelist_clean_pool, and colour_list, such
that:

>cat discovery_colour_list
filelist_ref_binary
filelist_clean_pool
>cat ref_binary
/path/to/grc37.ctx
>cat filelist_clean_pool
/path/to/XYZ_cleaned_pool.threshT.k31.ctx
cortex_var_31_c2 –kmer_size 31 –mem_height 25 –mem_width 150 –colour_list

discovery_colour_list –detect_bubbles1 1/1 –output_bubbles1 XYZ_bubbles_threshT
–exclude_ref_bubbles –ref_colour 0 >& XYZ_bubbles_threshT.log

This will require about 120GB of RAM (mem_height and width are no bigger, ut this time there
are two colours). Note I added _threshT to the name of the output file. That’s just future-
proofing, in case we decide/have time to clean at another threshold and re-call. And note that
the reference genome colour is EXCLUDED from discovery, discovery is done entirely in colour 1.

Script provided: I have provided a script to do this, which you run as follows:

perl script5_discovery.pl –ref /path/to/human_g1k_v37.proper_chroms.k31.ctx
–pop XYZ –cleaned_pool XYZ_cleaned_pool.threshT.k31.ctx –thresh T –outdir
XYZ_variant_calls/

This will detect bubbles and dump a file called XYZ_variant_calls/XYZ_bubbles_threshT
(which you will need to pass as an argument into subsequent scripts/steps).

NOTE: this only needs the cleaned pool to call, so it can run in parallel while
you simultaneously clean the samples. i.e. script5 and script4 can run at the
same time.

9.8 Genotyping

Normally we just load all the samples into a multicolour graph and genotype. Since we want to deal
with a whole population of humans, we have to employ a trick to reduce the RAM requirements by
only looking at polymorphisms. Having done bubble discovery in the cleaned pool graph, we cut
out the small part of each sample graph that overlaps these bubbles, creating a small binary file
(~2GB), and then make a multicolour graph from those for genotyping with. For the Luhya this
dropped the number of kmers down to 700 million, from 5 billion (i.e. we can drop mem_height
and width).
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9.8.1 First make a small binary file, just of the bubbles (no sample information, just
telling us what the bubbles are)

The commandline is

perl scripts/analyse_variants/make_branch_fasta.pl –callfile XYZ_bubbles_threshT
–kmer 31

This creates a fasta file called XYZ_bubbles_threshT.branches.fasta - this just adds k+1 bases
from the 5-prime flank on the front of each of the two branches, so you get two reads for each
call. Then make a binary file of this (should take a few minutes)

ls XYZ_bubbles_threshT.branches.fasta > list_XYZ_bubbles
cortex_var_31_c1 –se_list list_XYZ_bubbles –mem_height 23 –mem_width 100 –max_read_length

15000 –format FASTA –dump_binary XYZ_bubbles.k31.ctx >& output_dump_bubble_binary
This leaves us with a binary file which tells us what the sequence of the bubbles is: XYZ_bubbles.k31.ctx.
Script provided: I’ve provided a tiny script to do this script6_dump_a_single_graph_of_bubble_branches_to_be_shared_later_by_parallel_processes.pl

perl script6_dump_a_single_graph_of_bubble_branches_to_be_shared_later_by_parallel_processes.pl
–bubble_calls XYZ_variant_calls/XYZ_bubbles_threshT –ref human_g1k_v37.proper_chroms.k31.ctx
–thresh T

This will dump a bubble binary called XYZ_variant_calls/XYZ_bubbles_threshT.branches.k31.ctx,
AND it will dump a binary of the reference genome intersected with the bubbles

9.8.2 Then dump a bubbles binary for each sample (overlap of cleaned binary and bubbles)

Make a colour list for the CLEANED sample binaries:

>cat colour_list_samples_cleaned
sample_1_list
sample_2_list
...
>cat sample_1_list
sample_1_clean.ctx
>cat sample_2_list
sample_2_clean.ctx

And then we dump the intersection of each cleaned sample graph, with the bubbles. This is
equivalent to what we did before when we cleaned each sample against the cleaned pool. Here we
“clean” each of the sample binaries against the bubbles graph, and dump the overlap/intersection:

cortex_var_63_c2 –kmer_size 31 –mem_height 23 –mem_width 100 –multicolour_bin
XYZ_bubbles.k31.ctx –colour_list colour_list_sample_bubbles –load_colours_only_where_overlap_clean_colour
0 –successively_dump_cleaned_colours OVERLAP_BUBBLES >&output_overlapping_samples_with_bubbles

This will first of all load the bubbles graph into colour 0, and then it will go through the colour_list,
and for each line (sample), it will load that sample into the second colour in the graph (colour 1),
only taking the intersection with the bubbles graph that is already there, then dump a single-colour
graph of the intersection with filename sample_N_list_OVERLAP_BUBBLES.ctx , then wipe
that colour clean and move onto the next sample. It is important that you use cortex_var_31_c2
for this.

Should take about 1 hour per individual. If you want, you can parallelise this step (give
each node a colour list containing only one sample). Time taken =~ 1 hour if one process per
sample, or ~80 hours for 80 samples on one core.

Script provided:

perl script7_intersect_cleaned_sample_with_bubbles_PAR.pl –bubble_graph
XYZ_variant_calls/XYZ_bubbles_threshT.branches.k31.ctx –sample NA19316
–sample_cleaned_graph NA19316/NA19316.uncleaned.q10.k31.cleanT.ctx –thresh
T

This leaves an intersected (small) graph in the same directory as the original cleaned binary.
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9.8.3 Same for the reference - overlap the reference genome with the bubbles

>cat colourlist_ref
list_grc37_ref_binary
>cat list_grc37_ref_binary
grc37_ref_binary.ctx

cortex_var_63_c2 –multicolour_bin XYZ_bubbles.k31.ctx –kmer_size 31 –mem_height 23 –
mem_width 100 –load_colours_only_where_overlap_clean_colour 0 –successively_dump_cleaned_colours
OVERLAP_BUBBLES –colour_list colourlist_ref >& output_dump_overlap_of_ref_with_bubbles

Script provided: already done by script 6 above

9.8.4 Then make a multicolour graph of all samples at all sites/bubbles

Make a colourlist (called pop_ref_then_samples_overlapping_bubbles) as normal:

>cat ref_then_XYZ_clean_samples_overlapping_bubbles
list_grc37_ref_binary_overlap_bubbles
list_sample1_overlap_bubbles
list_sample2_overlap_bubbles
...
list_sample_80_overlap_bubbles
>cat list_grc37_ref_binary_overlap_bubbles
grc37_ref_binary.ctx.OVERLAP_BUBBLES
>cat list_sample1_overlap_bubbles
sample_1_clean.ctx.OVERLAP_BUBBLES
..etc..

Supposing we have 80 samples then the commandline is:

cortex_var_63_c81 –colour_list ref_then_XYZ_clean_samples_overlapping_bubbles
–kmer_size 31 –mem_height 23 –mem_width 100 –dump_binary multicol_ref_then_XYZ_samples_overlap_bubbles.k31.ctx

This should take approximately 1 hour.
No script provided

9.8.5 Run the genotyping

cortex_var_63_c81 –kmer_size 31 –mem_height 23 –mem_width 100 –multicolour_bin
multicol_ref_then_XYZ_samples_overlap_bubbles.k31.ctx –max_read_len 15000
–gt XYZ_bubbles_threshT,XYZ_bubbles_threshT.genotyped,BC –genome_size 3000000000
–experiment_type EachColourADiploidSampleExceptTheRefColour –print_colour_coverages
–estimated_error_rate 0.01 –ref_colour 0 >& genotyping.log

This will take of the order of 1 day, and to give you an idea, this will use 430GB of RAM for
100 samples, or 370GB of RAM for 85 samples.

No script provided

9.9 Apply the population filter and dump a VCF

9.9.1 Make some auxiliary files needed for running the filter

Make a table file (takes <1 second)

perl scripts/analyse_variants/make_read_len_and_total_seq_table.pl geno-
typing.log >& genotyping.log.table
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Make a covg file (takes ~30 mins - produces an output file with one line per variant, so very easy
to monitor progress if you are concerned). If you have 80 samples (plus one reference) then the
commandline is

perl scripts/analyse_variants/make_covg_file.plXYZ_bubbles_threshT.genotyped
81 0

This creates XYZ_bubbles_threshT.genotyped.covg_for_classifier.

9.9.2 Run the population filter

Either run the population filter in one process (slow - takes 24 hours). Suppose you have 5,000,027
calls:

cat classifier.parallel.ploidy_aware.R | R –vanilla –args 1 5000027 XYZ_bubbles_threshT.genotyped.covg_for_classifier
5000027 81 1 genotyping.log.table 3000000000 31 2 XYZ_bubbles_threshT.genotyped.classified

These are what the arguments are, set up to allow parallelisation. I’m afraid this is the best UI i
can manage in R:

• ### arg 1 - number of the first variant to use (if the first one is var_1, then enter 1).

• ### arg 2 - how many variants to process/classify

• ### arg 3 - input covg_for_classifier file. You should generate this in advance

• ### arg 4 - number of rows/lines in the covg_for_classifier file = number of variants
overall

• ### arg 5 - number of colours in the graph. For example you use cortex_var_31_c7
to get your calls, then this argument should be 7, even if you only loaded data from one
sample in

• ### arg 6 - was there a reference colour? 1 for yes and 0 for no (doesn’t matter which
colour it was)

• ### arg 7 - table of read lengths and covgs

• ### arg 8 - estimated genome size. (Don’t panic if not exact)

• ### arg 9 - kmer size

• ### arg 10 - ploidy. 1 for haploid, 2 for diploid, no other value acceptable.

• ### arg 11 - output file name

Or run the population filter in parallel, eg in 1000 processes each containing 5000 variants. The
N-th process will be (note the final argument is an output file, so must have N in its name)

cat classifier.parallel.ploidy_aware.R | R –vanilla –args N*5000 5000 genotypes.covg_for_classifier
5000027 81 1 genotyping.log.table 3000000000 31 2 XYZ_bubbles_threshT.genotyped.split_N.classified

If you do run in parallel, cat the resulting files together into one file; the first column of these files
is the variant number, so please ensure you cat them in order. Suppose at the end of this you
have a file called POP_FILTER_OUTPUT.

15



9.9.3 Dump a VCF

Build a stampy hash f the reference genome
Call process_calls.

perl process_calls.pl –callfile bubbles.genotyped –callfile_log genotyping.log –
outvcf populationname.bubbles –outdir OUTPTU_DIRECTORY –
samplename_list <file, lists names of each colour/sample in the same or-
der they are in the colours> –num_cols number_of_colours –
stampy_hash /path/to/ref.stampy –require_one_allele_is_ref yes –
vcftools_dir /path/to/vcftools –caller BC –kmer 31 –
stampy_bin /path/to/stampy.py –refcol 0 –
pop_classifier POP_FILTER_OUTPUT –ploidy 2 –ref_fasta grc37.fa

10 Appendices

10.1 How Cortex specifies memory use

Cortex specifies memory use up-front. You tell it how much to use, and that’s how much it will
use. If you specify too little, it won’t be able to fit all your data into that space, and it will give
up. Memory use is specified by the command-line parameters –mem_height H and –mem_width
W. Cortex then allocated a table of height 2H and width W. The table contains 2H ⇥ W cells,
each of which represents a kmer/word. A human genome contains about 2.5 billion kmers, which
corresponds to H=25, W=75. Every time you increment H by 1, you double the size of the table.
So H=26, W=75 supports 5 billion kmers, which is a good estimate for the maximum number you
should get in one of your samples.

Each cell in the table takes a fixed amount of memory, depending on the number of colours
in the graph. When building per_sample graphs and the pool, this is just 1, but in later steps it
becomes 2, and then the number of samples +1 (for the reference). So the formula is: memory
use = number of cells x memory use per cell = 2H ⇥W ⇥ (8+ 5c+1). So one uncleaned sample
should take about 2.5 billion times (8+5+1) bytes = 40GB, but because of sequencing errors, this
could go up to 70 or so. Generally you find one odd sample which has a disproportionately huge
number of errors, eg because it was sequenced to double the depth for some reason.

You therefore have a pipeline choice, depending on your compute availability

1. Allocate 90GB per sample and let them run safe in the knowledge all the processes will
complete cleanly, because there is plenty of memory. Downside: you have to use 80Gb per
process, so you can parallelise less. This is what I did. I ran 3 parallel processes on a big
ram machine, and sent 80 samples through that. It took a couple of weeks as I recall.

2. Try and squeeze the mem limit down, run through the majority of samples quickly, then go
back and redo the failures. Faster, but more manual intervention required (or a fancy job
tracking system)

I’ve given good estimates for what W and H should be in the above steps, but you may want to
modify slightly. These choices make NO difference to the content of the final graph. They just
affect the speed of processing.

10.2 How to monitor the output of Cortex and see how much memory is actually

used/needed

Cortex output when loading fastq will include the following lines
Total kmers in table: 1340096415
****************************************
SUMMARY:
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Colour: MeanReadLen TotalSeq
0 97 17484335969
This tells you it loaded all the data, and it contained 1.3 billion kmers. These went into Colour

0 of the graph, and had mean read length (after breaking reads at Ns and cutting reads at low
quality bases) of 97, and in total 17Gb of sequence was parsed/loaded.

So if all your samples are being loaded up and contain only 3 billion kmers, there’s no need
for you to allocate 7 billion, for example.

If Cortex is unable to load the data, the traditional error message is “too much rehashing”, but
in the next release I’ll make that more user-comprehensible.

10.3 More details on error-cleaning and loss of low frequency variants

I’m not going to explain here the error-cleaning technique Cortex uses - it’s not as crude as removing
low coverage words/kmer, but that’s a good first approximation. So, if we remove events that are
seen 4 times or less in the graph, what frequency of variants do we lose? If there

Having done this, take the coverage distribution file, and plot the data within (x-axis=column1
of the file, might as well set the limits on the x axis to be between 0 and 300, and y-axis=second
column, on a log scale). You will see a plot with a sharp leak at 1 - lots of unique kmers due to
errors, and another peak to the right, at the mean coverage across the genome (which is roughly
D(R � k + 1)/R, where D is the total depth in your population (eg 80 times 4x=320), R is the
read length (say 90) and k=31. Thus you expect a peak roughly at 213. We need to choose a
threshold T for the Cortex error cleaning, and the choice must lie between the peak at 1 and the
second peak. For the Luhya, this worked out at T=6. Please email me (Zam) at this stage if you
are at all hesitant or surprised at what you see
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