Vol. 00 no. 00 2012
Pages 1-21

cortex_var manual
Zamin Igbal

Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK

Revised on 11 October 2012

Version 1.0.5.13 of this document, corresponds to release 1.0.5.13 (and later) of cortex_var

ABSTRACT

cortex_var is a software suite for analysis of genetic variation
in individuals and populations by de novo assembly, which offers
(amongst other things) the following functionality:

e joint assembly of multiple samples/genomes (or references)
using multicoloured de Bruijn graphs

e low memory use (at k=31, 10 human genomes in under 256Gb
of RAM, 1000 yeasts in under 64Gb RAM)

e high quality variant calls from species with no reference genome
assembly

e variant call quality improved by integration of information
across samples - accurate classification of putative variants as
polymorphism, repeat or error.

e calling indels, complex combinations of SNPs, indels and
rearrangements (see our paper for nucleotide resolution
validation with fully sequenced fosmids of entire alleles (not just
breakpoint junctions)

e able to call phased haplotypes, consisting of groups of variants,
potentially longer than either read-length or insert-size.

e power/sensitivity of variant calls predicted by simple mathematical
model, validated both by simulations and with empirical data -
enables the user to tailor experimental design to their needs. See
our paper (Supplementary Material)

e supports arbitrarily large k-mer

e simple to parallelise on a cluster - vertebrate genomes can be
assembled in less than a day.

e having built and cleaned a graph, can be dumped to a binary file
for fast reloading

o reference-free calling of variants between species/strains

e alignment of a reference (or reads) to a graph, either to
call variants, or to observe support/coverage in different
samples/populations.

e speed, predictability and stability - memory use specified at the
start

o Wrapper script run_calls.pl provides a method for a user to
run an entire analysis in a single step, from fastq file all the way
to VCF file.

See our paper (Z. Igbal, M Caccamo, | Turner, P Flicek, G McVean,
De novo assembly and genotyping of variants using colored de Bruijn
graphs, (Nature Genetics)) for - description of our methods and
model, simulations, a set of SNP, indel and structural variant calls on a

HapMap/1000 Genomes human sample (NA12878); an assembly of
164 human individuals into a population graph, and determination of
allele frequencies for 3Mb of novel sequence that is not accessible by
mapping-based analysis, including much genic novel sequence that
is of probable functional significance; reference-free variant calls on
a population of 10 chimpanzees; the first demonstration of accurate
typing of HLA-B from whole genome shotgun short-read data.

1 INTRODUCTION:

This is a comparatively long and detailed manual, and I imagine 99
percent of you won’t read it from one end to another. I have tried to
include both details of how to run Cortex and also typical use-cases.
If you are new to Cortex, I always recommend trying the examples
in the demo/ directory, which are very simple and quick, but give
you an idea of how things work.

If you are interested in relatively small genomes, then the simplest
way to get started is to try our new run_calls.pl wrapper script,
that will build graphs, error-clean them, call variants and dump
VCF files all very quickly and with just a single command-line
instruction. One of the consequences of what we showed in our
paper, was that some variants are visible at high kmers only (because
of repeat content of the genome), and some are visible only at low
kmers (because they happen to have low coverage). Therefore if
we want to get a maximal set of variants, we should make calls
at a variety of kmers and take a union. We have therefore now
introduced with run_calls, two workflows, the “joint workflow”,
where discovery is done in a multicolour graph of all samples, and
the “independent workflow”, where discovery is done per sample,
and then all samples are genotyped at the union of all discovered
sites. In both cases, you can specify a range of kmers (and cleaning
thresholds) and the machinery will then do everything for you,
building, cleaning, calling, making union sets etc. These workflows
should make using Cortex much easier for many people.

The majority of the manual is about using Cortex itself directly.
If anything is unclear, please take a look at our Google group
(groups.google.com/group/cortex_var), and/or contact me.

2 QUICK START FOR THE IMPATIENT
2.1 Using the run_calls wrapper

I haven’t got time to read all this, I have twenty samples (named
after presidents) and and I have a rough reference genome assembly.
I want SNP and indel calls which are not affected by all the assembly
errors and artefacts. Just tell me how to detect all the polymorphisms

© Oxford University Press 2012.

Igbal et al

between these samples, so I can discover what mutations make a
president!”

o Install Cortex (see below)

e Build a tab separated “'index file”, one line per sample, detailing
where your single and paired-end fastq are. Columns are
sample_id, file list of single-ended files, file list of "left” paired-
end files, file list of “right” paired-end files. If you have no
single-ended data, put a dot, ”.”, in that field, and if you have
no paired-end data, put a dot, ”.”, in those two fields. The lists

can contain uncompressed or gripped fastq.

>cat INDEX
Reagan reagan_se reagan_pel reagan_pe2
Gorbachev gorbie_se gorbie_pel gorbie_pe2

>cat reagan_se
first_reagan_se_fastqg.gz
second_reagan_se_fastqg
etc

e Then build reference genome binaries at a couple of kmers
(say 31,61). Each will take anywhere between 30 seconds (for
a microbe) to 3 hours (for a large eukaryote) - this depends
heavily on speed of disk/network access, and so will be faster
if you use gripped fast)

cortex_var_31_cl —-—kmer_size 31
—--mem_height 17 —--mem_width 100

—--se_list file_listing_fasta
——max_read_len 10000

——dump_binary ref.k3l.ctx —--sample_id REF

cortex_var_63_cl ——kmer_size 61
—-mem_height 17 —--mem_width 100

—--se_list file_listing_fasta
——max_read_len 10000

——dump_binary ref.k6l.ctx —--sample_id REF

o Build a Stampy hash of the genome

stampy.py -G refname ref.fa
stampy.py —-g refname -H refname

e And now we can assemble variants, compare the two genomes
at two different kmers, combine all the results and dump VCFs:

perl run_calls.pl —-—-first_kmer 31
——last_kmer 61
——kmer_step 30
—-—-fastag_index INDEX --auto_cleaning yes
--bc yes —--pd no
——outdir dirname
——outvcf NAME
——ploidy 1
—-—stampy_hash refname
—-—stampy_bin /path/stampy.py

—-—-1list_ref_fasta FILELIST
--refbindir ref/

—-—genome_size 2800000
——max_read_len 100

—-—gthresh 5

—-mem_height 17 --mem_width 100
——vcftools_dir /path/vcftools_0.1.8a/
--do_union yes

—--ref CoordinatesAndInCalling
—--workflow independent

—--logfile logfile log.txt
——apply_pop_classifier

This will run, and coordinate everything for you, resulting in a pair
of VCEF files (both describing the same set of calls. See section
14.2 for a description of Cortex VCFs, and Section 15 for a detailed
discussion of how run_calls works.

2.2 Calling Cortex directly

Read the manual! I've put a lot of time into it.

3 COMMAND-LINE OPTIONS:

—-help
Help screen

——colour_list LIST_OF_LISTS
When loading binaries, this is a list of
filelists, one per colour, each containing
a list of binaries to go into that colour.
Cannot be used with --se_list, or --pe_list.
Optionally, a second (tab-separated) column
can specify sample identifiers for each colour.

—-multicolour_bin BINARY_FILENAME
If you are loading just one binary (1 or many
colours), this is the easiest way to do it.

—-—-se_list FILENAME
List of single-ended fasta/gq to be loaded.

—-—-pe_list LIST1,LIST2
Lists of "left" and "right", or \us 1 and \us 2
paired-end fasta/q files, assumed to be in the
same order, with corresponding files listed
at the same positions in the two files.
i.e. filel_1.fq and filel_2.fqg should both be
at the same position in LIST1 and LIST2
respectively.

—-—kmer_size
Odd integer. I don’t recommend using values
below 21. Cannot be larger than your
read-length.

—-mem_width
One of two parameters that determine memory use.
They specify a "rectangle" of memory, into which

cortex_var manual

you try to fit all your sequencing data. (i.e. max homopolymer in filtered

Takes an integer value. If in doubt try 100. read==threshold-1, and new

More details below. read starts after homopolymer.
—-mem_height ——remove_low_coverage_supernodes INT

One of two parameters that determine memory use. This is the recommended way to
They specify a "rectangle" of memory, into whichremove errors. Do not use on a

you try to fit all your sequencing data. reference genome!
For a microbe try 17. Remove all supernodes where max
For a human try 25 or 26. coverage is <= the limit you set.

More details below.
——remove_low_coverage_kmers INT

—-—fastqg_offset Remove kmers with coverage
Default 33, for standard fastqg. less than or equal to threshold.
Some fastqg directly from different Not recommended, see manual
versions of Illumina and paper for why.

machines require different offsets.
—-—load_colours_only_where_overlap_clean_colour INT

——sample_id Only load nodes from binary files

(Only) if loading fasta/q, you can in the colour-list when they overlap

use this option to set the sample a specific colour (e.g. that contains

identifier. This will be saved in a cleaned pooled graph);

any binary file you dump. requires you to specify this particular

colour. You must have loaded that

——dump_binary FILENAME colour beforehand, using

Dump a binary file with this —-multicolour_bin

name. If you have loaded fast/q,

then this always goes into colour 0, ——successively_dump_cleaned_colours SUFFIX

and Cortex will {\bf always} dump Used to allow error—correction of

a single colour graph. If you have low—coverage data on large numbers

loaded binaries, this will dump a of individuals with large genomes.

C coloured graph where C is the Only to be used when also using

number of colours you compiled ——load_colours_only_where_overlap_clean_colour

for. It’s the same C in the executable and ——multicolour_bin.

name: e.g. cortex_var_31_C5 means

it supports 5 colours. ——dump_covg_distribution FILENAME

Print k-mer coverage distribution

—-—-max_read_len to the file specified

Since version 1.0.5.12, there is no

need to specify max_read_len ——dump_filtered_readlen_distribution FILENAME

when loading sequence data Dump to file the distribution of

(FASTQ or FASTA). However "effective" read lengths after

it is still needed when using --gt quality/homopolymer/

to genotype a set of calls. PCR dup filters.

——output_supernodes FILENAME

—-—quality_score_threshold INT Dump a fasta file of all the supernodes.
Filter for quality scores in the
input file (default 0). ——-max_var_len INT
Maximum variant size searched
—-—-remove_pcr_duplicates for. Default 10kb. This is interpreted
Removes PCR duplicate reads by internally as an upper bound
ignoring read pairs if both on how big super nodes can get.
reads start at the same k-mer as a For relatively unrepetitive
previous read. genomes (e.g. many microbes)
it is not uncommon to get super nodes
——cut_homopolymers INT which are 10 or 20kb long.

Breaks reads at homopolymers
of length >= this threshold.

Igbal et al

—-—det
arg
1lis
to
Fin
whe
lie
Typ
--d
to
or
to
is
and
col
How

ect_bubblesl argl/arg?2

1 and arg2 are comma-separated
ts of colours (numbers from 0
c-1).
d all the bubbles in the graph
re the two branches/alleles

in the specified colours.
ical use would be
etect_bubblesl 1/1
find hets in colour 1,
——detect_bubblesl 0/1
find bubbles where one branch
in colour 0 (and not colourl)
the other branch is in
ourl (but not colour 0).
ever, one can do more

complex things:

e.g
to

is

and
4,5
See
Use
Use
The
and

. ——detect_bubblesl 1,2,3/4,5,6
find bubbles where one branch
in 1,2 or 3 (and not 4,5 or 6)
the other branch in colour

or 6 (but not 1,2, or 3).

below for more details.

-1 to specify all colours.

*3 to mean all colours except 3.
"1" in detect_bubblesl is legacy
will be removed in future.

——output_bubblesl FILENAME
Bubbles called in detect_bubblesl

are

——pri
Pri
for
Man

dumped to this file.

nt_colour_coverages

nt coverages in all colours
supernodes and variants.

datory if you want to dump

VCF .

-—exc
If
thi

lude_ref bubbles
you have specified --ref_colour,
s will exclude any bubble in

that colour from being called

by

the Bubble Caller.

—--path_divergence_caller [ARGS]

Mak
Arg
Opt

e Path Divergence variant calls.

uments can be specified in 2 ways.

ion 1. Calls once, comparing

reference and one colour (or union).

e.g

will look for differences between the

uni

. ——path_divergence_caller 1,2
——ref_colour 0

on of colours 1,2 and the

reference in colour 0

Opt

ion2. Make several successive

independent runs of the PD caller,

each time against a different colour.

To do this, use a square open

br

acket [PRECEDED AND

SEPARATED list.

For example
—-path_divergence_caller [2[3[10
—-—-ref_colour 0

will make calls on samples 2

then 3 then 10, all output to the
same file, with globally unique
variant names. The caller will
call against each colour in turn.
You must also specify
——ref_colour and —--list_ref_ fasta.

——-path_divergence_caller_output PATH_STUB
PD calls will go to a file called
PATH_STUB_pd_calls.

—-—-ref_colour INT
Colour of reference genome.

—--1list_ref_fasta FILENAME
File listing reference chromosome
fasta file(s). One chromosome per file.
Needed for path-divergence calls.

—-———gt INPUT,OUTPUT, {BC|PD}
Given an input file of calls in Cortex
format (5p, brl, br2, 3p) genotype
all colours in the graph and output
to specified filename. All calls must
be either from the BubbleCaller
or PathDivergence (not a mixture),
and you specify this with either BC
or PD. eg ——-gt infile,outfile,BC.
You need to specify --max_read_len
(max length of any read in the Cortex
call file, probably a flank),
—-—genome_size and
—-—experiment_type to do this.

——experiment_type

The statistical models for determining
genotype likelihoods, and for

deciding if bubbles are repeat or

variants, require knowledge of

whether each sample is a

separate diploid/haploid individual.

Enter type of experiment - valid values
are:

EachColourADiploidSample,
EachColourADiploidSampleExceptTheRefColour,
EachColourAHaploidSample,
EachColourAHaploidSampleExceptTheRefColour.
This is only needed for determining
likelihoods, so ignore this is you are
pooling samples within a colour.

——estimated_error_rate DECIMAL
If you have some idea of the

cortex_var manual

sequencing error rate (per
base-pair), enter it here. eg 0.01.
The default value is 0.01. This is
stored in the metadata in the header
of the graph binary file, if you

use —--dump_binary.

—-—genome_size INT

If you specify —--experiment_type,

and therefore want to calculate genotypes,
you must also specify the (estimated)
genome size in bp.

—--align FILENAME, {output binary name|no}

Aligns a LIST of fasta/g files to
the graph,

and prints coverage of each kmer in

each read in each colour.

Takes two arguments. First, a LIST
of fasta/q.

Second, either an output filename
(if you want it to dump a binary of
the part of the graph touched by
the alignment) OR just "no"

Must also specify —-—-align_input_format,
and —-—max_read_len.

—-—align_input_format TYPE
--align requires a list of fasta or fastq.

This option specifies the input format
as LIST_OF_FASTQ or
LIST_OF_FASTA.

—-—colour_overlaps argl/arg2

Compares each coloured subgraph

in the first list with all of the

coloured subgraphs in the second list.
Outputs a matrix to stdout;

(i, J)—-element is the number of nodes/kmers
in both colour-i (on first list)

and colour-j (on second list).

—-—genotype_site

(Beta code, soon to be upgraded)
Genotype a single (typically
multiallelic) site.
Syntax is slightly complex.
Requires an argument of the form
x,y[z[N[A,B[fastal
<CLEANED | UNCLEANED>
[plgl<yes|no>[MIN.
X,y 1s a comma-sep list of
colours to genotype.
z is the reference-minus-site
colour.
N is the number of alleles for

those allele first, one per colour).
Cortex will genotype combinations
A through B of the N choose
2 possible genotypes (allows
parallelisation); fasta 1s the file
listing one read per allele.
CLEANED or UNCLEANED allows
Cortex to tailor its genotyping model.
p,ad are two free/unused colours that
Cortex will use internally.
yes/no specifies whether to use the
more sophisticated error
model, which is still in development.
I recommend you stick with "no" for
now. The final argument, MIN, is
optional and allows performance
speedup by discarding any
genotype with log-likelihood<MIN.

——print_novel_contigs args

Allows printing of novel sequence

absent from a reference

(or more generally, absent

from a set of colours).

Takes arguments in this format
a,b,../c,d,../x/y/<output filename>
Cortex will find supernodes in
the union graph of colours a,b,..
Typically the list c¢,d,.. of colours
is just one colour - that of

the reference.
Cortex will print contigs
(supernodes) to the output
file which satisfy the following
criteria.
Contigs must be at least x bp long.
The percentage (as integer) of
kmers in the contig which are

present in ANY of the colours c,d,...

must be at most 1-y.

i.e. y is the minimum proportion
of novel kmers in a contig.
Typically this is 100.

We ignore the first and last kmer
of the contig, as these will
typically connect to the reference

4 COMPILING AND INSTALLING

The clearest and briefest instructions are in the INSTALL file in the
Cortex release. Here I try to explain things, rather than tell you what

to do.

this site 4.1 Run the install script - only needs to be done once

(which cortex assumes are loaded
in a multicolour_bin containing

Cortex now comes bundled with the GNU Scientific Library,
samtools, and two libraries from Isaac Turner. These are all

Igbal et al

compiled once only, using the bundled shell script, install.sh. You
can run it as follows:

bash install.sh

4.2 Compiling Cortex itself

Cortex produces executable files which are labelled (in the filename)
with what kmer sizes and numbers of colours they support. A file
named cortex_var_X_cY supports kmers between X — 31 and X
(inclusive), and colours between 1 and Y. X is always one less
than a multiple of 32. So if you want to work with k=41, you need
to work out the nearest multiple of 32 greater than 41 - this is 64 -
and subtract 1. Your compile command is then:

make MAXK=63 cortex_var

If you want to support up to 247 colours for k=41, then the command
is

make MAXK=63 NUM_COLS=247 cortex_var

Remember MAXK must be one less than a multiple of 32. Default
is MAXK=31, NUM_COLS=1. Another example

make NUM_COLS=3 MAXK=95 cortex_var

- this supports k between 65 and 95, and up to 3 colours. More
colours and higher MAXK both increase memory use (explained
below).

We have not implemented any error-checking in the Makefile,
so negative, fractional or non-numeric values of MAXK or
NUM_COLS, or a MAXK which is not 1 less than a multiple of
32, will give unpredictable results.

4.3 Install/setup needed for post-processing of Cortex
calls

There are two external dependencies, which you will need in order
to be able to dump VCFs. In both cases my script will need you to
tell it the path to these packages.

e Get Stampy from http://www.well.ox.ac.uk/project-stampy.
This is needed for placing of variants on a reference. Stampy
needs you to have Python 2.6 or 2.7, and only supports x86_64.
Download it, unzip it, change into that directory and type
“make”

e Get a tar ball of VCFTools from

https://sourceforge.net/projects/vcftools/files/
(I specifically require a tar ball, not a subversion repository, as
they seem to have different directory hierarchies, and I need to
be able to find things). I can verify that version 0.1.8 and 0.1.9
work fine

Add the following two directories to your PERL5LIB

scripts/analyse_variants/bioinf-perl/lib
scripts/calling/

Add the following directory to your PATH environment variable

scripts/analyse_variants/needleman_wunsch-0.3.0

In both cases give the FULL path, not just the one I showed above,

WARNING - I understand the temptation to just compile Cortex
once, for 100 (or some large number) of colours, and then use that
for everything, but that will increase your memory usage. Wherever
possible I recommend using the minimum number of colours for the
specific command you are entering.

5 FILE INPUT

cortex_var accepts the following as input

1. Fasta (gzipped or uncompressed). These will always be loaded
into a single colour graph, and will be dumped as a single-
colour binary (these can subsequently be mixed into whatever
colours you like)

2. Fastq (gripped or uncompressed). These will always be loaded
into a single colour graph, and will be dumped as a single-
colour binary (these can subsequently be mixed into whatever
colours you like)

3. A list of lists (in Cortex jargon, a “colourlist”) - one list of
binaries per colour

4. One multicolour binary.

We consider items 1 and 2 first, and then items 3 and 4.
The release version of cortex_var does not support read-pairs (the
internal development version does), but PCR duplicate removal
algorithm does require knowledge of read-pairing (described
below). Therefore cortex_var allows input of a list of single-ended
fasta/q (--se_list), and a pair of lists for paired-end data (--pe_list
filelist1,filelist2). For example:

> cat se_filelist

my_fastgl.fqg.gz

my_fastg2.fqg

> cat pe_filelistl

fastgl_1.fqg

fastg2_1.fqg.gz

fastg3_1.fqg

> cat pe_filelist2

fastqgl_2.fqg

fastg2_2.fqg.gz

fastqg3_2.fqg

> cortex_var —-se_list se_filelist
——pe_list pe_filelistl,pe_filelist2
—--mem_height h
——-mem_width w
——dump_binary somename.ctx
—--sample_id ZAM

This will dump a single-colour binary called somename.ctx (and
will store the fact that this graph represents a sample called ZAM
in the binary header metadata). However, with the current release
of cortex_var, there is no benefit to using --pe_list unless also using
--remove_pcr_duplicates.

Returning to items 3 and 4 above (loading binary files): if given
both a multicolour binary, and a colourist (a list of sublists of
single-colour binaries - each sublist for a different colour), then
the multicolour binary is loaded first, into colours O to n, and then
each of the sets of single-colour binaries are loaded into subsequent

cortex_var manual

colours. Binary files contain a header specifying kmer, number of
colours (and version), so there is also a quick check to ensure you
are not trying to load more colours than the executable of cortex_var
supports.

5.1 Example with a trio

Suppose we want to examine the genomes of two parents and a
child, and have built single-colour binaries of each; assume that
both Illumina and 454 data was available for each, requiring slightly
different error-correction (see below), we build two binaries for each
individual: - mum_illumina.ctx, mum_454.ctx, dad_illumina.ctx,
dad_454.ctx, child_illumina.ctx and child_454.ctx. We then want to
load the mother, father and child into colours 0,1,2 respectively. We
have also built a binary of the reference genome ref.ctx, and want
this in colour 4. All of these binaries must be built with the same
kmer, k, and cortex_var must have been compiled to support at least
4 colours (make NUM_COLS=4 cortex_var, for example). We load
the data as follows:

ls mum*.ctx > list_binaries_for_ mum_colour

ls dadx.ctx > list_binaries_for_dad_colour

ls child*.ctx > list_binaries_for_child_colour
ls refx.ctx > list_ref_ binary

and then make a colour-list:

ls listx > colour_filelist

Then open colour _filelist with a text editor and ensure the files are
ordered mum,dad,child,ref:

> cat colour_filelist
list_binaries_for_mum_colour
list_binaries_for_dad_colour
list_binaries_for_child_colour
list_ref_binary

Now we can run:

cortex_var_31_c4 —--kmer_size 31
——colourlist colour_file
——dump_binary family_an d_ref.ctx

This will dump a 4 colour binary, with the mother, father, child,
reference in colours zero to three. If at some later date we want
to compare these 3 individuals with 29 other individuals, each of
whom has a single binary, indiv_n.ctx, then first we need to compile
a version of cortex_var that can handle so many colours:

make NUM_COLS=33 cortex_var

This will generate a binary cortex_var_31_c33 . We then make a new
colourlist just of the new individuals, in an equivalent manner to
above:

ls indiv_1l.ctx >
ls indiv_2.ctx >

individual_1_lbinarylist
individual_2_binarylist

ls indiv_29.ctx > individual_29_binarylist
ls indivsbinary | sort > list_new

and then run Cortex:

cortex_var_31_cl
—-multicolour_bin family_plus_ref.ctx
——colour_list list_new
——kmer_size k
—-mem_height h —--mem_width w

This will load the mother, father, child, reference into colours
0,1,2,3 and then individuals 1 to 29 into colours 4 to 33.

5.2 Relative and absolute paths in colourists

Absolute paths always work inside Cortex file lists. However at
v1.0.5.13, we changed the convention on how Cortex interprets
relative paths. Prior to v1.0.5.13, all relative paths were relative to
the current working directory from which Cortex was being called.
From v1.0.5.13 onwards, relative paths are interpreted as being
relative to the file that lists that path. Here’s an example (sorry
for the cultural references), showing how you can now go to one
directory containing binaries, and do Is to list them into one file, and
then go somewhere else to make your colourist.

>pwd

/data/zam/output/binaries

>1s x.ctx

luke_skywalker.ctx

princess_leia.ctx

>1ls x.ctx > list_bins

>cd /data/zam/some_other dir

>echo /data/zam/output/binaries/list_bins

> colour_list_vader_kin

>cortex_var_31_cl
—-—colour_list colour_list_vader_kin
——kmer_size 31..etc

Previously the paths in list_-bins would have had to be relative
to /data/zam/some_other_dir, now they are relative to whatever
directory contains list_bins.

6 FILTERING INPUT DATA
6.1 Quality filter

Cortex allows reads to be filtered on-the-fly as they are loaded, by
specifying --quality_score_threshold Q. Each time a read has any
base with phred-scale base-quality less than or equal to Q, then the
read is cut at that base. For example, if a 100 base read has a low-
quality base at position 50, then this is split into two. With a kmer
greater than 49, the entire read is effectively filtered, as after cutting
the two remaining sequences are below the kmer length. If a 100
base read has low quality bases at positions 45, 70, 94 and 95, then
with k£ = 19 the read is split into 3 chunks of sequence, each one of
which contributes to the final de Bruijn graph. Some non-standard
fastq use a different ASCII offset for quality - notably, some fastq
as dumped by Illumina use an ASCII offset of 64 rather than the
standard value of 33. Cortex allows you to specify the offset thus:
--quality_offset 64; by default Cortex assumes the standard/official
value of 33.

Igbal et al

6.2 Quality filter as a memory-reduction device

Just to give you a rough idea: if you have relatively low coverage
(< 20x for a diploid, < 10x for a haploid), then I would not use a
quality threshold higher than 5. If you have much higher coverage,
you can afford to raise this limit to 10, for example. A higher
threshold will reduce your memory footprint, and speed up loading
of data. However, I do not recommend using a high threshold of 40
as you end up throwing away too much good data - you can trust
Cortex’s error cleaning later on to improve your results.

6.3 PCR duplicate removal

A simple (and approximate) mechanism for removing PCR
duplicate reads. As paired-end reads are loaded, the first kmers in
each read are recorded (by annotating the graph). If a new read has
starts with a kmer that was previously the first kmer of a read, and
the mate read starts with a kmer that was previously the first kmer
of a read, then both reads are discarded. PCR duplicate removal
is specified by --remove_PCR _duplicates. This is an extremely fast
method for duplicate removal compared with standard mechanisms
requiring mapping and sorting, and we find that for some libraries
removes as much as 5 percent of reads.

6.4 Homopolymer filter

Reads can be cut at homopolymers of a specified length. --
cut_homopolymers will cut a read at a homopolymer longer than
a specified value, starting a new read just after the homopolymer
run. This can sometimes be useful with 454 data, both to reduce the
number of errors in the graph, and to cut the memory usage. (In one
case, with 454 data of a human, memory use was reduced by 70Gb
of RAM by cutting homopolymers of length greater than 3, and the
number of kmers dropped from over 7 billion to what one would
expect for a human genome, around 2 billion).

7 CHOOSING HASH TABLE SIZE (I.E. SETTING
YOUR MEMORY USE IN ADVANCE)

Cortex allocates memory once and for all at the start - if the available
memory is not enough Cortex graciously stops with a message,
rather than killing the server. The hash table can be thought of as
a rectangular region of memory, and one must specify the height
and width on the command-line --the area of the rectangle is the
number of nodes in the largest possible graph. The units in which
we measure height and width are nodes of the de Bruijn graph
- ie. the area of the rectangle is the number of nodes in the
biggest supportable graph. Each node has a size that depends on
the maximum kmer-size supported by the executable (specified at
compile-time). A genome of size X bases will require at most X k-
mers, plus a number of k-mers created by sequencing errors. The
number of these depends on the quality of your data, the filters
applied on loading data, and the coverage. A good initial guess
might be to allocate double the number of k-mers in the genome.
Choose h and w such that

2"« w = 2 % (length of genome). ()

e.g. If the genome size is 2Mb, then we expect a maximum
of 2 million kmers in the genome, plus a number due to
sequencing errors, so we try 4 million as an overestimate.

210 4 75 = 4.9 million. Thus we specify --mem_height=16 -
-mem_width=75. The memory-use M (in bytes) of a cortex_var
single-colour hash table with N nodes, using an executable that
supports a maximum kmer of K, can be calculated precisely, using
this formula:

_ | K (8]
M_[8{32-‘+5+1] N)

The formula is explained in our paper (basically it just contains
contributions from storing kmer, coverage and edges); one thing we
did not mention in the paper was the [, which signifies that you
round up everything within those brackets to the nearest multiple of
8 - this is because of OS-memory allocation preferring to give you
memory in multiples of 8 bytes.

For the above example, if we create a hash table with 4.9million
nodes, and k31, then memory use will be (8 + 5+ 1) x 4900000 =
68,600, 000. i.e 68.6 Megabytes of RAM. One final consideration
is that of performance of the graph-building process - if we try to
completely fill a hash table, performance will drop significantly
towards the end, and so in general it is best to allocate a table
slightly larger than the amount of data we expect to load. Each
node in a multicolour cortex_var graph contains information about a
given kmer (and its reverse complement) in multiple colours. If we
have compiled cortex_var to support C colours, with a maximum
kmer of K (using make NUM_COLS=C MAXK=K cortex_var),
then memory use is specified thus:

K (8]
M= [(8 [3—21 +50+1W N 3)

For example, if we want to load sequence data for a deeply
sequenced trio of humans into a graph with & = 31, we do
the following. Firstly, we build one single colour binary for each
individual. A human genome (length 3 Gigabases) should, to first
approximation, contain at most 3 billion kmers . If we allow space
for 3 billion sequencing errors also, then we notice that 2%° x 90 ~ 6
billion. Since 8 + 5 + 1 = 14, the nearest multiple of 8 above is 16
and so this should therefore require

[8+5+1]" %610 bytes = 16 x6x 10°bytes = 84Gb of RAM.

@
In fact (for k around 20 — 50), a human genome contains around 2.5
billion kmers (calculated by counting kmers in the human reference
genome), and so after error correction the number of nodes in the
graph drops to around 2.5 billion, which we dump to a binary.
Finally, we now want to load 3 binaries into 3 colours in a graph
that supports only 3 colours (C' = 3). Most kmers will be shared
(as the trio are from the same species), so we only need allocate
around 3 billion nodes. Memory use, applying the formula, is
(84 (5x3)4+1) x 3 x 10° = 72 Gb of RAM. Note that by
judicious error-correction, we are able to load 3 humans into around
the same amount of RAM as is needed for any individual prior to
error correction. The precise amount of memory required depends
on the quality of the sequencing data.

8 CHOOSING AN APPROPRIATE KMER

We go into considerable detail in our paper, explaining the inter-
relation of read-length, depth of coverage, sequencing error rate,

cortex_var manual

kmer size and genome repeat content. There are two main positions
you may be in:

1. You have been given a data set to analyse. So coverage, read
length (and the species) are predetermined. In that case all that
remains is to ask - what do you want to achieve? Do you want a
high sensitivity set of SNPs, a high specificity set of SNPs and
indels, to explore the nature of larger structural variants? Is this
in a single individual, or in a population? What do you know
about the genome in question?

2. You have a scientific question you want to answer, and you are
designing an experiment. Maybe you have a new species with
no reference genome and you want to design a SNP chip, for
which you need SNPs. Or maybe you suspect large insertions
or deletions of begin important in your species, but noone has
investigated them yet.

In the Supplementary Material of our paper we go through these
issues in great detail. Here are some highlights: Larger kmers
lead to greater ability to disentangle the genome graph at a cost
in sensitivity. That cost in sensitivity can be offset by increasing
coverage, up to a limit determined by the nature of the genome, and
the kmer size. This can be quantified, thus - the power P to detect
an allele of length ¢, given sequencing depth D and read length R,
is given by

AL

P = G(tz k)E(k, 8)(1 — e_)‘L)Qe—Ate7 (5)

where A\ = D/R, L = R —k + 1 and G is the Genome
Complexity . E is the power loss due to sequencing errors and error-
cleaning, dependent on k and the sequencing error rate . Things to
notice:

1. The repeat content of the genome sets an upper bound on
power, dependent on k. There are plots of G for the human
genome in our paper, and we show how we estimate G.

2. As k increases towards R, L drops to zero,and therefore so
does the power (because of the (1-exp)-squared)

3. The final terms give the probability, given a certain read-length
and coverage, that the allele is present in the graph - in other
words, that there is not a coverage gap in the middle of it. This
last term basically comes down to our having determined the
full probability distribution for a Lander-Waterman model on a
de Bruijn graph (normally when you see the Lander-Waterman
statistics, people deal only with mean and variance, not the full
distribution).

We show in our paper how the model matches the results of
simulations, as well as in empirical data, with analysis of read data
from a high coverage human, and a population of chimpanzees. If
you’re applying this formula, remember that for heterozygous sites,
you need to assemble two alleles, whereas for homozygous sites
(where a reference genome gives you one allele) you only have to
assemble one.

9 ERROR CLEANING

By error correcting and then dumping a binary just of the
clean/correct nodes (and later reloading the clean binary), we reduce
the number of nodes in the graph, and therefore also the memory
requirement. You only get a memory reduction from error-
cleaning if you dump a binary after error-cleaning, and then
load that binary. That’s the general paradigm in which you should
use Cortex - don’t multi colorise until after error-cleaning.

9.1 Error cleaning a single sample

cortex_var contains 2 means of error-cleaning:

1. --remove_low_coverage_supernodes N. This is the recommended
option; it first removes tips and then removes supernodes where
the maximum kmer coverage of all nodes in the interior of the
supernode is at most N. This is described in Supplementary
Methods Section 6 of our paper, and also in Supplementary
Figure 3, which is well worth studying. We measured a
30% increase in discovery sensitivity compared with simple
coverage cutoff for kmers, because it does not break up long
contigs just because there is a brief coverage dip.

2. --remove_low_coverage nodes. This is a simple method of
error-cleaning, which can be useful when the volume of
sequencing errors is such that the vast majority of nodes
with low coverage are errors. However random sampling will
also create nodes with low coverage, and deleting those will
introduce gaps in an assembly. --remove_low_coverage_kmers
N will remove all nodes with coverage < N. As we describe
in our paper, we do not recommend this method, it’s a blunt
instrument and creates gaps in the assembly.

9.2 Error-cleaning low coverage samples when you
have many samples from the same
species/population

Standard error-cleaning methods for de Bruijn graphs all depend
on having sufficiently high coverage (“things which happen rarely
are more likely to be errors than real”). However recent projects,
such as the 1000 Genomes Project, have pioneered a new design
for sequencing experiments, where many individuals are sequenced
to lower depth. cortex_var provides a means for error-correction by
comparison with a population graph. The approach is:

e Build one uncleaned graph per individual.

e Merge all these graphs into one single-colour graph, and error-
clean that

e Clean each individual graph by comparison with the cleaned
pool - just take the intersection of the two

Here is a step-by-step example. Suppose you have 100
individuals, each sampled at low coverage, all from the same
species/population:

1. Merge all of the individual binaries into one colour (use
--colour_list FILE1, where FILE1 is a filelist containing
just one file (FILE2), and where FILE2 is a list of

Igbal et al

all the indiv_N.uncleaned.ctx) and error-clean using --
remove_low_coverage_supernodes , and dump a cleaned
population pooled graph clean_pool.ctx

2. Build a 2 colour version of Cortex, and tell it to load the
cleaned pool into the first colour (colour 0), and then to load
indiv_1.uncleaned.ctx into colour 1, and clean it by comparing
it with the cleaned pool graph in colour O, and then dump
a cleaned individual graph, then wipe colour 1 clean, load
indiv_2.uncleaned.ctx into colour 1, clean it by comparison
with the pool, dump a cleaned individual graph,, wipe colour 1
clean, ... etc.

3. cortex_var_31_c2 --kmer_size 27 --mem_height h --mem_width
h --multicolour_bin cleaned_pool.ctx --colour_list (list one
colour, and that containing a list of all uncleaned individual
binaries) --load_colours_only_where_overlap_clean_colour 0 --
successively _dump_cleaned_colours SUFFIX

Each cleaned binary is dumped in the same directory as its
corresponding unclean binary, with the SUFFIX added to its name
to signify that it has been cleaned. The command line for the above
is

cortex_var_31_c2 ——kmer_size 27
——mem_height h —-—-mem_width w
—-multicolour_bin cleaned_pool.ctx
——colour_list COL_LIST

——load_colours_only_where_overlap_clean_colour 0

—-successively_dump_cleaned_colours SUFFIX

10 VARIATION DISCOVERY USING THE BUBBLE
CALLER

The Bubble Caller is described in detail in our paper. Essentially the
idea is to look for motifs in the graph, which we call bubbles, which
are created by both polymorphism and by repeats. We can build up
an understanding of what this can do in stages:

e In a single-colour graph, built from sequence reads from a
single diploid individual, bubbles are caused by differences
between alleles, or paralogs, or sequencing errors. More
generally, the same applies even in a multicolour graph, if we
restrict to bubbles found in a specific colour. We do this with
Cortex, supposing we are interested in colour i (for individual)
- we look for bubbles in the graph where both branches/sides
of the bubbles are present in colour i - here’s the command-line

cortex_var_31_cl —-—-kmer_size k
—-mem_height h —-—-mem_width w
—-multicolour_bin sample.ctx
——detect_bubblesl i/i
——output_bubblesl output_filename
——print_colour_coverages

e If we are lucky enough to have a reference genome for the
species of interest, then we can do an approximate job of
eliminating repeats by loading the reference genome into its
own colour (say colour r), and ignoring bubbles that can
be found in that colour. (I say this is approximate because

reference genomes contain collapsed repeats - i.e. they are
imperfect - see later on in this manual for the Population Filter,
which does a much better job). We do this thus:

cortex_var_31_cl1l00 —--kmer_size 31
—-mem_height h --mem_width w
——-multicolour_bin sample_and_ref.ctx
—-—detect_bubblesl i/i

——exclude_ref bubbles

—-ref_colour r

——output_bubblesl output_filename
—-—print_colour_coverages

Steps 1 and 2 above primarily find heterozygous sites, where
the data from the individual (colour i) contains both alleles.
(They may also found homozygous sites where sequencing
errors have given “false” coverage to the other allele - the
genotyping step (see below) deals with this issue). If we have
a reference genome (colour r) we can expand our discovery to
allow both homozygous and heterozygous sites,by looking for
bubbles in the UNION of colours i and r, thus:

cortex_var_ 31 c¢l00 —--kmer_size 31
—--mem_height h —-mem_width w
—-—-multicolour_bin sample_and_ref.ctx
—-—detect_bubblesl i,r/i,r
——exclude_ref bubbles

—-—-ref_colour r

——output_bubblesl output_filename
—-—print_colour_coverages

Here, Cortex has treated colours i and r as a single colour, and
looked for bubbles in that union-colour. If you are working with a
diploid species, this is the right way to do it - get all the variant sites
you can, and then decide if they are homozygous or heterozygous
after calling, with the genotyping stage of Cortex. Cortex decides
whether to genotype just after calling on the basis of whether you
give it enough information. If you tell it whether the species is
haploid or diploid, and you tell it the genome size (approximate is
fine), then it will genotype each call as soon as it discovers it. I give
details of this below.

10.1 Finding bubbles that distinguish colours

Cortex does support discovery of variants that distinguish colours,
which can be very useful. For example, if you want to find variants
where one allele exists in colour 1, but has ZERO coverage in colour
2, and the other allele exists in colour 2, but has ZERO coverage in
colour 1, then here’s the command:

cortex_var_31_c2 —--kmer_size 31
—-mem_height h —--mem_width w
——-multicolour_bin sample_and_ref.ctx
——detect_bubblesl 1/2
——output_bubblesl output_filename
—-—print_colour_coverages

Use cases:

e Comparing two reference genomes

10

cortex_var manual

e Comparing two stringently cleaned samples 10.3 Options you must include if you want to build a
e Looking for sequence that is definitely absent from some VCF
sample 1. You must use the --print_colour_coverages command when

calling bubbles if you are going to dump a binary.
My advice is - be careful. In real data, there are sequencing errors, 2. Save the output from Cortex (the stuff it prints to screen) as a

s0 you don’F always see ZERO reads on an allele., even when it is log file. You will need it for the population filter (if you use it)
not present in the sample. If your colours are stringently cleaned, and for building a VCF

then this might be fine, or if they are pooled populations where
you want to find highly dlffer.en.tlated v.arlants, this mlght be fine. If 10.4 What do Cortex calls look like?
these are reference genoes, this is definitely fine. But think carefully))]] o
about whether you are better off just calling in the union and then Variants are printed in this format (this is an example for
genotyping, to allow for sequencing errors. demonstration only, usually the flanks are much longer):

Note the command-line generalises simply. Suppose you had a set
of cases (colours 1,3,4,5,6,7,8,9,10) and a set of controls (colours 20
to 29). You could look for variants that split the two groups thus:

>var_1_5p_flank length:42 INFO:KMER:31
CTGAGATAGGCTGGTCCTCACCTCCAGAGCCAGCCAGCCCCG
>branch_1_1
CGCCCTTGTTGAGTGTTCTTTGGAATTGTCGTTTTTTGAGCACAAC
TACAGCATTT

>branch_1_2
TGCCCTTGTTGAGTGTTCTTTGGAATTGTCGTTTTTTGAGCACAAC

cortex_var_31_c¢30 ——kmer_size 31
——mem_height h ——mem_width w
—-multicolour_bin samples_and_ref.ctx
—-—detect_bubblesl 1,3,4,5,6,7,8,9,10/20,21,22

I
TACAGCATTT
23,24,25,26,27,28,29 N ¢ G(li 35 flank
——-output_bubblesl output_filename var_-_-p_rian
TAGACTGCATGAAACCATGA

—-—print_colour_coverages

The format is fasta-like, with reads appearing in quartets. The first
read is the Sprime flank, the next two are the two alternate alleles,
and the final read is the 3prime flank. The first number after var_or
branch_is the number of the variant. This example is a SNP, so the
10.2 Tricks two branches (alleles) differ only in the first base.

If we had added --print_colour_coverages to the command-line,
the output would be in this format, showing for each branch and for
each colour the coverage of each kmer along the branch :

This is obviously not a very good example, in a normal case-
control study you don’t expect to find a massive signal like that.

You can use an asterisk to denote all colours except a specific one.
The following command looks for bubbles that distinguish 0 from
the other colours

>var_1_bp_flank
CTGAGATAGGCTGGTCCTCACCTCCAGAGCCAGCCAGCCCCG
>branch_1_1
CGCCCTTGTTGAGTGTTCTTTGGAATTGTCGTTTTTTGAGCACAAC
TACAGCATTT

>branch_1_2
TGCCCTTGTTGAGTGTTCTTTGGAATTGTCGTTTTTTGAGCACAAC
TACAGCATTT

cortex_var_31_c¢30 ——kmer_size 31
—--mem_height h ——-mem_width w
—-multicolour_bin samples_and_ref.ctx
——detect_bubblesl %x0/0
——output_bubblesl output_filename
——print_colour_coverages

whereas this command looks for bubbles in the union of all colours

except 0: >var_1_3p_flank
TAGACTGCATGAAACCATGA

cortex_var_31_c30 --kmer_size 31 branchl coverages

—-mem_height h --mem_width w Covg in Colour O0:

—-multicolour_bin samples_and_ref.ctx 111111111111111 11111
——detect_bubblesl x0/%0 1111111111111 11111111
——output_bubblesl output_filename 11111111111111
——print_colour_coverages Covg in Colour 1:

4 33332222
Also, -1 signifies ALL colours (so you don’t have to write enormous 222222222

NN
NN
NN
NN
w N
w N
w N
w =
w
w =
w N
SN

comma-separated lists). This example looks for bubbles in the union 4 4444433333333
of all colours branch2 coverages
Covg in Colour O:
cortex_var_31_c¢30 ——kmer_size 31 100000000O0O0O0O0OO0OOOOOODODO
--mem_height h --mem_width w 000000O0OO0OOOOOOOOODODODO
—-multicolour_bin samples_and_ref.ctx 000000D0DO0OO0OO0OO0O0OOD O
——-detect_bubblesl -1/-1 Covg in Colour 1:
——output_bubblesl output_filename 4 3 33334443 44444444444
-—print_colour_coverages 4 4 4 4 44 4 4 4443333322222

11

Igbal et al

34333455555 41414

Suppose we had specified the reference genome be loaded into
colour 0. We see that branch2 (allele2) has zero coverage in colour
0, so this is not the reference allele. However branchl1 has coverage
1 in colour 0, so is the reference allele (and has no paralogs in the
reference). Finally, we see both alleles have coverage in colour 1
(the de Bruijn graph of the individual).

10.5 Haploid organisms

The Bubble Caller works perfectly well with haploid organisms. It
has no knowledge of ploidy at the point of discovery, and just looks
for bubbles. When you genotype, then you need to tell if if haploid
or diploid.

11 VARIATION DISCOVERY USING THE PATH
DIVERGENCE CALLER

11.1 Applying the PD caller to a union/pool of colours

The idea of the Path Divergence Caller is to build a 2-colour
de Bruijn graph of a sample, and a reference genome, and then
follow the path through the graph taken by a reference genome,
detecting (primarily homozygous) variants via their breakpoints
(where the path of the reference diverges from the graph of the
sample). On human data, for example, the Path Divergence Caller
successfully calls SNPs, indels, inversions, complex haplotypes
consisting of phased SNPs and indels, and Alu retrotransposon
indels. See our paper for a detailed analysis of its sensitivity
and specificity, validated by comparison with fully sequenced and
finished fosmid sequence. See for example Figure 3b in our paper.
Note these important requirements: the ‘PD requires one fasta
per chromosome in the reference and requires that the entire
reference be loaded into the graph. If you try to use a reference
which is not already loaded into the graph, Cortex will throw an
error (cannot find such-and-such kmer) and exit.

For example, if the reference is in colour 0, and the sample in
colour 1, then we invoke the caller thus:

—--path_divergence_caller 1

—--ref_colour 0

——list_ref fasta list_fasta
—--path_divergence_caller_output output_file

If, more generally, we had loaded 8 samples into colours 0,1,2...7,
and we wanted to consider them as a pool, and wanted to look for
variants between them and a reference in colour 8, then we would
type:

--path_divergence_caller 0,1,2,3,4,5,6,7
-—-ref_colour 8

—-list_ref_fasta list_fasta
—--path_divergence_caller_output output_file

One output file is created. The output format is as for the Bubble
Caller.

One detail worth noting - Cortex has a global setting for the
maximum variant length it looks for, set by default to 10kb. If you
are looking at a reference sequence smaller than that, Cortex won’t
be able to get a sliding window of the size it expects, and won’t
call anything. In such cases, set --max_var_len to something more

appropriate. For example in one of the demo/ examples we look at a
reference genome which is about 2kb long, and we set --max_var_len
500 to successfully call a variant which is the deletion of an Alu
from within an Alu (a completely made-up example). Obviously,
if you want to call larger things, and set max_var_len larger. The
theoretical limit is half the length of the chromosome, though I have
never tried with anything greater than 100kb.

11.2 Applying the PD caller to different colours
consecutively

Suppose we have loaded 8 samples into colours 0,1,2...7, and
the reference into colour 8, and we want to first call variants by
comparing sample O with the reference, then sample 1, then sample
2, all the way up to sample 7. To do this, we use a slightly awkward
syntax:

—-path_divergence_caller [O[1[2[3[4[5[6[7
--ref_colour 8

—-—-list_ref_fasta list_fasta
—-path_divergence_caller_output output_file

12 GENOTYPE CALLING

Cortex will genotype calls using the model described in our paper.
To do this, it needs to know depth of coverage, read length,
sequencing error rate, and also what the colours represent - is each
colour data from a diploid sample, or a haploid sample (the only two
options we currently support (call me if you want more)).

In the process of building binaries from fastq, Cortex stores
information about read length and total base pairs loaded into the
graph, and this is preserved in the header of its binary files, so
this information is available already. But to work out depth of
coverage, it needs the length of the genome (--genome_size). If
you can estimate the sequencing error rate (eg by comparing a
small number of sites with other experimental data - for human
HapMap samples, I look at sites that HapMap says are ref-ref in
my sample, and count how many of those sites I have coverage on
the alt-allele), then enter that in --estimated_error_rate (per base)
- if you enter nothing, Cortex uses a default of 0.01. Finally,
you need to use --experiment_type. Valid arguments for this are
EachColourADiploidSample,
EachColourADiploidSampleExceptTheRefColour,
EachColourAHaploidSample,
EachColourAHaploidSampleExceptTheRefColour.

If you do this, for example with the reference in colour 0, and diploid
samples in colours 1 to 10, and run the Bubble Caller, your output
will look like this

Colour/sample GT_call 11lk_hom_brl 11lk_het 11lk_hom_br2

O0=REF NO_CALL O 0
1 HOM2 -17.47 -3.68 -1.54
HOM1 -3.40 -8.20 -35.49
HOM2 -22.03 -4.50 -1.67
HOM1 -1.56 -2.89 -12.28
HET -11.49 -2.53 -6.26
HOM1 -1.55 -2.88 -12.26

oy U W W N

12

cortex_var manual

7 HOM1 -1.75 -5.13 -28.10 The output is then ready to go straight into process_calls.pl (see
8 HET -6.47 -2.56 -11.65 below).

9 HOM1 -3.00 -7.79 -35.90

10 HOM1 -1.69 -4.41 -21.69 12.2 Making all of that simpler

This whole business of calling on different samples and running
scripts to make union call sets and working out maximum read
lengths and then running —gt all seems a lot of bother, and a bit of
a pain for the user. We therefore provide a wrapper script that does
everything, from building binaries, cleaning them, calling, making
union sets, genotyping and then dumping VCFs. See the section
below of run_calls.pl.

followed by the usual (flanks, branches, colour coverages).
GT_call is the called maximum likelihood genotype. 1lk means log
likelihood. Thus each row has a colour, a genotype call, and then the
log likelihoods of the three possible genotypes. When generating a
VCF from this file, our process_calls.pl script annotates a genotype
confidence, as the difference between the maximum log likelihood,
and the next biggest.

12.1 Genotype calling on calls that have already been 13 CLASSIFICATION OF VARIANTS AS VARIANT,

made REPEAT OR ERROR
Cortex also allows you to genotype calls at a later stage than We describe in our paper our statistical model for classifying
discovery. This allows you to make calls individually on a set structures in the graph - essentially polymorphisms, repeats and
of samples, make a union set of all the variants, and then go errors all have different allele-balance and coverage statistics in
back with this bigger set of variants, to genotype all the samples. a population, so we can use this information to classify putative
All you need to do is pass in a set of Cortex calls (without — variants.

print_colour_coverages output and specify the output filename,
and whether the caller was the Bubble Caller of Path Divergence 13.1 When should I use the population filter/classifier?
caller. The simplest way to do this is call on all your samples,
concatenate the output files, and then pass that in. That’s not ideal,
as you end up with non-unique variant names (each sample call set
has variants called var_1, var_2, etc). So we have a script to make it
easier:

For diploid species: Use the filter when you have several samples
- we have got good results with s few as 10 chimpanzees, but the
more the better. Do not use it on a single sample. We have used it
on humans and chimps so far.
For haploid species: In the case of a haploid species, because there
is no such thing as a heterozygous site, the signal from repeats is
perl analyse variants/ very strong. As a result, we’ve used the population filter to remove
make_union_varset_at_single kmer.pl repeats even when looking at just two samples. We have used this

—~kmer 31 on P. falciparum and S. aureus for example, and got good results.
——index INDEX

——varname_stub SOME_STRING

13.2 How to run the population filter
——outfile FILENAME_OF_UNION_CALLSET

We provide an R script (in the scripts/analyse_variants directory),called
classifier.parallel.ploidy_aware.R, for classifying putative variants -
this will be integrated into the main executable in future releases.

Here is how to apply the filter (all of the scripts below are in
scripts/analyse_variants):

The index file is tab separated with 3 files. These are: filename of a
BubbleCaller or PD caller output, kmer size, and cleaning threshold
used. You can just enter O for the cleaning threshold if you want,

that argument is only really used by run_calls.pl. All the files must .. .
have been called by the BC, or all called by the PD. You can’t pass ~ 13-3 Make some auxiliary files needed by the R script

in a mixture. e Make a table file (takes < 1 second). Takes as input, the log file
You're then ready to genotype your calls - if you use a multicolour you stored from running the Bubble or PD caller - i.e. whatever
graph of all your samples, each of them will be genotyped at Cortex printed to screen - most importantly, the table of mean
each of these sites. First work out the longest read in the file read lengths and total sequence in each colour.
FILENAME_OF_UNION_CALLSET (which includes both flanks
and alleles), call it MAX, and then run: perl make_read_len_and_total_seq_table.pl
genotyping.log
cortex_var_31_cl37 >& genotyping.log.table
——multicolour_bin all_samples_and_ref.ctx
——kmer_size 31 e Make a coverage file. The script takes as arguments a call
-—gt UNION_CALLSET,UNION_CALLSET.genotyped, BC file (the output file from Bubble or PD caller), the number of
——experiment_type colours for which Cortex was compiled when those calls were
EachColourADiploidSampleExceptTheRefColour made (e.g. if you used cortex_var _31_217 to analyse 3 samples,
——genome_size 3000000000 then use 217), and the final argument is the reference colour
—--max_read_len MAX (enter -1 if there was no reference)

——print_colour_coverages
perl make_covg_file.pl

13

Igbal et al

BC_or_PD_callfile
NUM_COLOURS
REF_COLOUR

This creates a file called BC_or_PD_callfile_covg_for_classifier.

13.4 Run the population filter/site classifier

Suppose you have N calls. The classifier takes these arguments (in
this order)

1. number of the first variant to use (if the first one is var_1, then
enter 1).

. how many variants to process/classify
. input covg_for_classifier file.

. Number of rows/lines in the covg_for_classifier file = N

[S I)

. number of colours in the graph. For example you use
cortex_var_31_c7 to get your calls, then this argument should
be 7, even if you only loaded data from one sample in.

6. was there a reference colour? 1 for yes and O for no (doesn’t
matter which colour it was

7. Table of read lengths and covgs
8. Estimated genome size. (Don’t panic if not exact)
9. kmer size
10. ploidy. 1 for haploid, 2 for diploid, no other value acceptable.

11. output file name

You can therefore run the classifier in one process or in parallel.
Roughly speaking, I would not bother parallelising unless I had
millions of calls.

Here’s how to run the classifer - unfortunately I don’t know how
to make R take command-line arguments in a user-friendly way, so
you just pass in one argument after another, space-separated:

cat classifier.parallel.ploidy_aware.R | R
—--vanilla
argl arg2 arg3 arg4 argb
arg6 arg7 arg8 arg9 argl0 arg 11

13.5 Running in one process

To give a concrete example, supposing I have N calls over
num_colours colours/samples, I used kmer=31, there is a reference,
and the genome is diploid and 4Gb in size:

cat classifier.parallel.ploidy_aware.R | R
--vanilla
—--args
1
N
callfile.covg_for_classifier
N
num_colours
1
genotype.log.table
4000000000
31
2

callfile.classified

Please note this will not work if you use 4e9 instead of
4000000000. The output of the classifier looks like this: tab
separated columns are variant number, classification (variant,
repeat or error), and confidence (difference between maximum log
likelihood, and next biggest)

1 variant 15.46981
2 repeat 1.228099

13.6 Running in parallel

Exactly as above, just change the first and second arguments to
specify which variants you want to classify (1 to 1000, 1001 to
1999, etc), and the final argument to specify the output file. When
you are finished, concatenate the output files in the correct order
(i.e. the final file should have first column which is all the variants
in numerical order of variants).

14 CONVERTING CORTEX CALLS INTO VCF
FORMAT

Cortex provides a script (process_calls.pl) which takes a BC or
PD call file, plus various arguments, and dumps a pair of VCFs.
The raw (.raw.vcf) file contains the actual calls. The decomposed
(.decomp.vcf) file breaks down composite variants into sub-SNPs
and indels where possible. Why is this necessary?

A great strength of Cortex is that it looks for variants in a
manner completely agnostic to variant type. It does not look for
SNPs, or deletions or insertions - it looks for any allelic differences.
However, as a result, Cortex variant calls can often consist of
clusters of nearby SNPs, or SNPs and indels, or large deletions with
a small insertion at the breakpoint, etc, and it can be non-trivial to
classify the type of variant found. Of course, in many cases there
is no canonical decomposition into subvariants, and the final truth
depends on whether the subvariants occured at the same time, by
the same mechanism, which can only be inferred by looking at how
they segregate in a population. We have therefore found it useful
to be able to do a full Needleman-Wunsch alignment between the
two branches (alleles). Since version 1.0.5.6 Cortex has used a C
implementation of Needleman-Wunsch from Isaac Turner, which
is bundled into the release (and which is much faster than the old
process_bubbles.pl script Cortex used to use).

14.1 process_calls command-line arguments

process_calls.pl takes the following mandatory arguments
—-—-callfile FILENAME

- this is the file output by the Bubble or Path Divergence caller
(which must have been called with --print_colour_coverages.

—--callfile_log FILENAME

- this is a file containing the text Cortex printed to screen (“’stdout”
output) - it is generally simplest if you pipe consolee output when
calling to a file for this reason.

14

cortex_var manual

——outvcf STRING

The VCFs output will have filenames which start with this string.

——outdir DIRNAME

Output directory name

——-samplename_list FILENAME

A file containing one line per colour, and on each line, a sample
identifier - these end up in the header line of the VCF. Use "REF”
for the reference colour (if there is one). This option will be removed
in future releases - Cortex now supports an option --sample_id,
so Cortex binaries, and Cortex console/stdout output have this
information. In the future I'll fix the script to simply read the names
from the callfile_log above. But for now, sorry, you need to make
this file. If you use the run_calls.pl script, which wraps everything
from binary building, cleaning, calling all the way to VCF dumping
(see below), then this is done for you.

——num_cols

Specify the number of colours in the graph. If you used
cortex_var_31_c2419 but only loaded 127 samples, you should enter
2419 here.

——-stampy_bin

Full path to stampy.py (which you can obtain from
http://www.well.ox.ac.uk/project-stampy).

—-—stampy_hash PATH

Cortex calls variants completely without use of a reference, but
inevitably one needs to place these on an assembly. process_calls.pl
will map the flanks of your calls to an assembly using Stampy (it
must be Stampy, you cannot replace it with a mapper of your choice
- note this is not a standard operation for a mapper). You need to
first build a Stampy hash. Suppose your reference was ref.fa, then
you do this as follows

stampy.py -G /path/to/foo ref.fa
stampy.py —-g /path/to/foo -H /path/to/foo

This will create two files, /path/to/foo.stidx, and /path/to/foo.sthash. You

should enter --stampy_hash /path/to/foo. (Replace the string foo
with the name of your species or reference or whatever). If you
have no reference, and don’t care about coordinates, but want to
know what the variants are (SNPs, indels, complex), and who has
what allele (genotypes), then we abuse VCF slightly. Suppose you
have N variant calls. First create a pseudo-reference which has N
chromosomes. Chromosome i is the Sprime flank, branch1 and then
3prime flank of variant i:

perl make_fake_reference.pl --callfile FILE
—-—outfile OUTFILE

Then build a stampy hash of this pseudo-reference and pass it
in with the —stampy_hash argument above. Back to arguments of
process_calls.pl:

—-—vcftools_dir

This is needed in the VCF dumping process. Give the name of the
root VCFTools directory - this should have subdirectories called:
bin, cpp, lib etc.

——caller STRING

Valid arguments are BC or PD (signifying Bubble Caller or Path
Divergence Caller).

——kmer INT

Self-explanatory - the kmer used to call these variants.

The following arguments are optional

——refcol INT

Which colour was the reference (if any). Default is -1 (meaning no
reference present)

—--pop_classifier FILENAME

If you used the population filter/classifier, then pass in here the name
of the classifier output file.

—-ploidy INT

Valid values are 1 (haploid) and 2 (diploid). Default is 2.

—-—prefix STRING

String prefix will go on the start of all variant names. e.g --prefix
ZAM will produce variants ZAM_var_1, ZAM_var_2, etc

—-ref_fasta FILENAME

Stampy maps calls to a reference with a mapping quality. We use a
threshold of 40 by default, so 1 in 10000 are wrongly placed on the
reference. If you pass in the name of the reference fasta here, this
script will check the VCF and remove misplaced variants.

14.2 Interpreting Cortex VCFs

The main Cortex VCF file is the “raw.vcf”. Here is a typical line,
which I’ll have to print over a few lines to fit into the width of this
column in the manual:

5 12087
PASS
GT:COV:GT_CONF

var_278 TA T
PV=3; SVLEN=-1; SVTYPE=DEL

0/0:14,0:40.52 1/1:1,6:16.86

15

Igbal et al

This is a variant at position 12087 on chromosome 5. The reference
allele is TA and the alternate allele is T, so it is a 1 base deletion. The
PASS means it has passed all the Cortex filters. PV=3 means that
there is an ambiguity of 3bp in where you could decide to “’place”
this variant. Here’s the intuition. If one allele is XY X and the other is
X, we could consider this a deletion of the first XY, or of YX. Those
two options would imply different positions for the variant. Cortex
left-aligns. This text: GT:COV:GT_CONF tells you that Cortex has
done genotyping (GT), and for each sample you will get a genotype
call, the coverages on the two alleles, and the genotype confidence
(log probability of the max likelihood genotype - log probability
of the 2nd most likely). In this case the first sample is called
homozygous reference (0/0), with coverage 14 on the reference
allele and O on the alternate, and with genotype confidence of 40.52.
Larger confidences mean you are more confident of the call.
Here is another example

17 732281 wvar_134
ATCCA ACCCC
PASS

SVLEN=2; SVIYPE=PH_SNPS
GT:COV:GT_CONF

0/0:18,0:51.93 1/1:1,13:32.69

This time the reference allele is longer, as is the alternate allele,
and they are quite similar. It’s a little difficult to decide what we
think of it, and so process_calls does an alignment of the two alleles
(look in the .aligned_branches file in the output directory). SVTYPE
is set to COMPLEX, so process_calls thinks, on the basis of the
alignment, that it is a cluster of phased SNPs. If we look in the
decomp VCF, this splits these into separate SNP calls, but loses the
phasing information.

17 732282 var_4_sub_snp_1
T C . PASS
SVLEN=0; SVTYPE=SNP_FROM_COMPLEX
GT:COV:GT_CONF

0/0:18,0:51.93 1/1:1,13:32.69

17 732285 var_4_sub_snp_2

A C . PASS

SVLEN=0; SVTYPE=SNP_FROM_COMPLEX

GT:COV:GT_CONF

0/0:18,0:51.93 1/1:1,13:32.69

If you used the population filter, then each site has a site
confidence as well as a genotype confidence.

14.3 Missing calls

Calls which cannot be mapped to the reference you are using cannot
go into the VCF, as you don’t have chr or position. Those which are
discarded are mentioned in the output of process_calls (“Ignore this

var_9 - due to this error Did not map”). In future I’'ll dump them to
an unmapped.vcf.

14.4 Making a high confidence set

Look at the distribution of site confidences of your sites (if you have
used the population filter), and choose a threshold for minimum site
confidence. Look at the minimum or median genotype confidence
for each site (across samples), and set a minimum threshold on that.
Remember these confidences are in log space, so a confidence of 10
means this is e'® times more likely than the alternative, so no need
to set massive thresholds.

15 SIMPLIFYING CORTEX ANALYSES -
WORKFLOWS AND RUN_CALLS.PL

15.1 Standard workflows

The latest release of Cortex introduces two standard workflows,
allowing the user to run a complete analysis, all the way from
fastq file to VCEF file of variants, with a single command-line. The
pipeline builds uncleaned graphs of each sample and examines the
coverage distribution of kmers to choose a per-sample cleaning
threshold. If desired, additional stringent or relaxed thresholds are
used bracketing the automated choice, or it is possible to override
automated error-cleaning with a specified threshold across all
samples. Multiple simultaneous instances of the building, cleaning
and discovery phases can be run (all based on the same directory
structure), allowing parallelisation across kmers or samples. Both
workflows are controlled by a Perl script called run_calls.pl. Both
workflows create “binaries”, “calls” and “vcfs” subdirectories
within the specified output-directory, allowing the user to re-use
binaries, and also do post-mortem analysis of any of the call sets.

15.2 Workflow 1 - joint discovery

The joint discovery workflow is the most direct and simple
workflow. Suppose for simplicity that one cleaning threshold has
been used for each sample. These cleaned graphs are loaded into
a single multi-colour graph. If (one or more) reference genomes
are available, these can be loaded into further colours. The user
specifies if a reference is Absent, used for CoordinatesOnly or
CoordinatesAndCalling. The user is also allowed to specify the
number of cleaning thresholds to use above and below that chosen
by the pipeline. Each sample is given a list of cleaning thresholds
(ordered numerically), and all samples have the same number of
cleaning thresholds in this list. For each kmer, and for each index
in the list of cleaning thresholds, a multicolour graph is built, the
bubble caller is applied to find variants, and each call is immediately
genotyped for all samples. A VCF is built at each kmer, and then
these are merged at the end.

As the number of samples increases, it becomes more likely that
either a site becomes multiallelic, or that sequencing errors can
confound a variant, which may reduce sensitivity at a fraction of
sites. These can can be overcome by more stringent error-cleaning,
and by use of the independent workflow (below).

15.3 Workflow 2 - independent discovery

This workflow is used to maximise sensitivity, and requires the use
of a reference for both calling and coordinates. Each sample has

16

cortex_var manual

graphs built for different k-mer values, and cleaned to different
levels just as for the joint workflow. However in this case, discovery
is done repeatedly for each sample, for each k-mer, for each
cleaning threshold, in a 2-colour graph containing the sample and
the reference genome. At each kmer, a union set of calls is collated
from all the callsets, and then all the samples are genotyped on
this set of sites, in the joint (multicolour) graph of all samples,
using the lowest specified cleaning threshold for each sample. Since
a reference genome is available, this workflow allows the user to
specify that the Path Divergence caller is also used, allowing the
user to access a range of larger variants. On combining VCFs,
run_calls may find multiple variants at the same site, or overlapping.
These sites are marked in the FILTER field, as MULTIALLELIC,
or OVERLAPPING.

This workflow is only available if a reference genome is available,
although in principle, one could generalise it by designating a
specific sample to take the role of the reference here.

154 Reference genomes can be incorporated at
different levels - run_calls terminology

In the joint workflow, the user is given three choices for how to
include a reference genome (”Coordinates Only”, ’Coordinates
And In Calling”, and ”Absent”). The independent workflow
always uses “Coordinates And In Calling”. These approaches are
described thus:

e Coordinates Only: A reference genome is loaded into the
graph in its own colour, but is completely ignored during
variant discovery. For each discovered variant, the two alleles
are compared post-hoc with the reference colour, and he flank
is mapped to the reference to get coordinates.

e Coordinates And Calling: The reference genome is loaded
into its own colour, and is included in variant discovery. For
each discovered variant, the two alleles are compared post-
hoc with the reference colour, and he flank is mapped to the
reference to get coordinates

e Absent: There is no reference loaded into the graph, and so
once variants are called, they are placed in a VCF with dummy
chromosome/position fields. A fake reference genome is used,
with one ”chromosome” per variant, so all variants should lie
on their own chromosome.

If a reference genome is used, the user is required to pre-build
binary graphs of the reference at all kmer-sizes which are to
be used. To give a sense of scale, for S.aureus a k=31 reference
genome binary takes 13 seconds to build, and a k=61 binary takes
20 seconds.

The reasons to prefer the ”Coordinates Only” (excluding the
reference colour from discovery) are:

1. Ensures complete freedom from reference-bias - equal power
for discovery of both alleles.

2. Discovers differences between samples, and not between
the samples and the reference - i.e. avoid unnecessary and
irrelevant variant calls created where all samples differ from
the reference.

3. Avoids situations where the reference graph confounds the joint
graph of the samples.

The reasons to prefer "Coordinates And Calling” (including the
reference colour when discovering variants) are:

1. The reference is known to be of high quality and not very
divergent from the samples

2. There is a need to know sites where all samples have the same
genotype, which differs from the reference genome

15.5 Command-line options for run_calls.pl

——first_kmer
This script allows you to run
across a range of kmer sizes.
This is the lowest.
It must be odd.

—-—-last_kmer
Ignore this if you want to
run for one kmer only.

——kmer_step
If you run for many kmers,
this is the increment.
Make sure this does not imply use
of odd kmer values. Currently
there is not enough checking
in run_calls.pl for people
entering bad arguments for
this.

—-—auto_cleaning {yes|no}
Takes values "yes" or "no".
Default "no".
This looks at covg distribution
and chooses a cleaning threshold.
This makes a big difference to the
success of calling, it’s much better
than just choosing one threshold
for all samples.

——auto_below INT
You can also ask it to make extra
cleaned binaries for, say 2 thresholds
below the auto-chosen one.
By default it wont do this.

——auto_above INT
You can ask it to make extra
cleaned binaries for, say 3 threshold
values above the auto-chosen
one (will stay below the expected
depth) .

—--user_cleaning {yes|no}
Takes values "yes" or "no".
Default "no".

17

Igbal et al

Make your own cleaning choices

——user_min_clean INT
Specify cleaning threshold.

Use this for either specifying just

one threshold or a range.

——user_max_clean INT
If you want to try a range.

Ignore this if you only want to

use one threshold

——user_clean_step INT
Increment between
user-specified cleaning
thresholds.

--bc {yes|no}
Make Bubble Calls.
You must enter yes or no.

Default (if you don’t use —--bc)

is no.

--pd {yes|no}
Make PD calls.
You must enter yes or no.

Default (if you don’t use —--bc)

is no.

——outdir DIRNAME
Output directory. Everything
will go into subdirectories
of this directory

—-—outvcf NAME
VCFs generated will have
names that start with the
text you enter here.

—-—ref
Specify if you are using a
reference, and if so, how.
Valid values are:
CoordinatesOnly,
CoordinatesAndInCalling,
Absent

—--ploidy
Must be 1 or 2. Default 2.

——prefix STRING
If you want your variant calls
to have names with a specific
prefix, use this.

——stampy_hash PATH_STUB
MANDATORY. Build a hash of

your reference genome, and

specify here the path to it.

If stampy makes blah.stdidx etc

then specify blah.

See below for what to do if there is
no reference.

—-stampy_bin /path/stampy.py

Specify the path to your Stampy binary.
Or manually edit this at the top of the
file (it’s marked out for you).

—-—fastag_index FILENAME

MANDATORY. Tab separated file has
columns:

SAMPLE_NAM

se_list

pe_listl

pe_list2.

(One line per sample)

—-—gthresh INT

Quality score threshold

—-—dups

Remove PCR duplicates

——homopol INT

Cut homopolymer threshold.

——mem_height

for Cortex

——mem_width

for Cortex

—--max_read_len

Max read length. If you are passing
in reference genomes,
use 10000.

-—gt_assemblies

Valid arguments, "yes" and "no".
Default is "no".
If "yes", run_calls assumes the input data

are whole genome assemblies, and sets
sequencing error rate to a tiny value,

to allow "genotyping" of differences between
the assemblies.

—-max_var_len

max var length to look for.
Default value 40000 (bp)

——genome_size

Genome length in base pairs -
needed for genotyping.

——refbindir

18

cortex_var manual

Directory containing binaries
built of the reference at all
the kmers you want to use.
The binary filename should
contain the kmer value,

eg refbinary.k31l.ctx

——-list_ref_fasta FILE

File listing the fasta files
(one per chromosome)

for the reference.

Needed for the PD caller.

——vcftools_dir DIRNAME

VCFtools is used to generate
VCFs - mandatory to either
specify this on cmd-line,

or manually edit the path

at the top of this script.
This should be the VCFtools
root dir, which has
subdirectories called:

bin, cpp, 1lib

—-—do_union {yes|no}

Having made many

callsets (per kmer and cleaning),
should we combine all calls into

a union set, and genotype all
samples? Valid values are yes

and no. Default is no.

If you want a VCF, type yes.

If you just want to build binaries
for now, type no.

—--manual_override_cleaning FILE

You can specify specific
thresholds for specific samples
by giving a file here, each line
has three (tab sep) columns:
sample name, kmer, and
comma-separated thresholds.
Don’t use this unless you know
what you are doing.

—--logfile

Output always goes to a logfile,
not to stdout/screen.
If you do not specify a name here,
it goes to a file called
"default_logfile".
So, enter a filename for your
logfile here.
Use filename,f to force overwriting

of that file even if it already exists.

Otherwise run_calls will abort to
prevent overwriting.

——workflow
Mandatory to specify this.
Valid arguments are
"Joint" and "independent".

—-—apply_pop_classifier

Apply the Cortex population filter,

to classify putative sites as repeat,

variant or error.

This is a very powerful method

of removing false calls.

but it requires population information
to do so - ie only use it if you have at
least 10 samples.

This is just a flag (takes no argument)

—-—squeeze_mem
You need to set mem_height and
mem_width large enough
that a single uncleaned sample
graph can be held.
If this flag is set, once all samples are
build and cleaned, Cortex will
count how many kmers there are
in the cleaned graphs and reduce
memory use (mem_height
and mem_width) to a smaller
value that is sufficient to hold
the cleaned data, .

16 TYPICAL USE-CASES FOR RUN_CALLS AND
THE CORTEX WORKFLOWS

16.1 Comparing two strains of microbe

Suppose we have sequence data from two strains of some microbe
that we want to compare. The most direct way to do this is to
use the joint workflow (load them both into a graph and compare).
If we have a reference, which may be slightly diverged, we
do the following. First, choose a kmer-range to try - we know
that different variants will be accessible at high kmer (genome
repeat content/genome complexity) and at low kmer (relatively low
coverage at these sites means they are lost at high kmer). So we
could do an immense parameter sweep, but in my experience all
you need is one low and one high kmer - in the example below I
use k=31 and 61. We first build k=31,61 binaries of the reference
genome:

cortex_var_31_cl —--kmer_size 31
—-mem_height 17 —--mem_width 100

—--se_list file_listing_fasta

——format FASTA

——dump_binary ref.k3l.ctx —--sample_id REF

cortex_var_63_cl —-—-kmer_size 61

19

Igbal et al

—--mem_height 17 --mem_width 100

—--se_list file_listing_fasta

—-—format FASTA

——dump_binary ref.k6l.ctx —--sample_id REF

So build an “index file”, which has two rows (one per sample) of
tab-separated text, where the columns are sample identifier, se_list,
pe-listl and pe_list2 (as used by Cortex itself). Then we are ready to
run the analysis:

perl run_calls.pl --first_kmer 31
-—-last_kmer 61
——kmer_step 30
——-fastag_index INDEX --auto_cleaning yes
--bc yes —--pd no
—-—outdir dirname
——outvcf NAME
—--ploidy 1
—-stampy_hash ref/species_name
-—stampy_bin /path/stampy.py
—-—1list_ref_ fasta FILELIST
—-refbindir ref/
—-—genome_size 2800000
—-—format FASTQ —--gthresh 5
—-—-mem_height 17 —--mem_width 100
—--vcftools_dir /path/vcftools_0.1.8a/
—-—do_union yes
—-—-ref CoordinatesOnly —--workflow joint
—--logfile logfile log.txt
—-—apply_pop_classifier

This will:

1. Build unclean k=31, k=61 binaries of both samples

2. Look at the coverage distribution of both of these, choose the
most appropriate error-cleaning threshold, clean both binaries.

3. Make a 3-colour graph (reference, samplel, sample2), and then
call variants in the union of colours 1 and 2 (--detect_bubbles1
1,2/1,2)

4. Apply the population filter - in the case of two haploids, this
will remove repeats.

5. Build a k=31 and a k=61 VCF.

6. Combine the vcfs from different kmers to produce two final
VCFs (raw and decomp)

This is the first thing I would try, if there was a reference. I would
also try the independent workflow, and include the Path Divergence
caller:

perl run_calls.pl --first_kmer 31
——last_kmer 61
——kmer_step 30
—-—-fastag_index INDEX --auto_cleaning yes
-—-bc yes —-pd yes
——outdir dirname
—-—outvcf NAME
—--ploidy 1
——-stampy_hash ref/species_name
-—stampy_bin /path/stampy.py

—-—1list_ref_fasta FILELIST
--refbindir ref/

—-—genome_size 2800000

—-—format FASTQ --gthresh 5
—-mem_height 17 —-mem_width 100
--vcftools_dir /path/vcftools_0.1.8a/
—-—do_union yes

—--ref CoordinatesAndInCalling
—--workflow independent

—--logfile logfile log.txt
——apply_pop_classifier

If in fact there was no reference available, I would use --ref Absent
(and leave out --list_ref_fasta and --refbindir).

16.1.1 Extending to more strains Cortex memory use M (in
bytes) scales with number ¢ of samples/colours, k-mer k, and the
total number /N of kmers according to this formula:

k (8]
M:N[8[§]+56+1—‘ (6)

where [1]® means round n up to the nearest multiple of 8.
For typical microbial genomic use-cases, each isolate or strain is
sequenced to relatively high depth (> 20x), and therefore each
sample graph can be error-cleaned independently - both the joint and
independent workflows assume this is the case. This ensures that
sequencing errors impact memory use only at the per-sample
level. By the time a multicolour graph is built, memory requirements
depend on the genome size and sample diversity, but not on total
sequencing depth or sequencing error-rate. Applying this formula
to an experiment using 100/1000/10000 samples of a 3Mb genome,
we can estimate the memory requirement at k=31 by using an upper
bound of 5 million true unique kmers amongst the samples. This
results in an estimated memory use of 2.5/25/250 Gb RAM.

16.2 Looking at a human family trio for de novo
mutations

Actually there’s nothing special about microbes. The above
independent workflow would also be ideal for looking at a human
trio. With 3 diploids there would essentially be no value to the
population filter, so the command-line would be:

perl run_calls.pl —--first_kmer 31
-—-fastag_index INDEX
——auto_cleaning yes
--bc yes —-pd yes
——outdir dirname
——outvcf NAME
--ploidy 2
—-—-stampy_hash grc37
-—stampy_bin /path/stampy.py
——list_ref fasta FILELIST_GRC37
——refbindir ref/

——genome_size 3000000000

—-—format FASTQ —--gthresh 5
—-mem_height 26 —--mem_width 100
--vcftools_dir /path/vcftools_0.1.8a/
-—-do_union yes

20

cortex_var manual

——ref CoordinatesAndInCalling 17 TROUBLESHOOTING RUN_CALLS
--workflow independent Some typical issues which have arisen when people use run_calls:
—--logfile logfile log.txt

TTSqueeze_mem yes 17.1 D’ve got really high coverage of two microbial

strains where I know the answer, but run_calls is

not calling them
The mem_height and mem_width options specify how much

memory you want to use when building the graph. However there
are two very different phases to the process. First, one build
and cleans per-sample graphs. This requires more nodes (due -—gthresh 10 --auto_cleaning stringent
to sequencing errors), but only one colour. The second phase
needs all the sample cleaned graphs in a multicolour graph. By
default run_calls will use the same mem_height and mem’us width ——gthresh 10 --auto_cleaning yes -—-auto_above 2
parameters all the way through. This means for the second phase,
you are using a lot more memory than you need, and for human
genomes, this will be profligate. The --squeeze_men option tells
run_calls to reduce memory use after error cleaning.

If you do have very high coverage (hundreds of x), you can afford
to filter your data quite conservatively. Using

is a good start, or you might try

telling run_calls to use a couple of extra cleaning thresholds above
the default.

21

